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We consider the nonequilibrium, elastic-scattering structure factorS(q,t) ~q denotes the wave vector,t the
time!, for the Kawasaki spin-conserving kinetic Ising model of a one-dimensional system with nearest-
neighbor interactions, initially in equilibrium at temperatureTI , that is suddenly placed in contact with a heat
bath at temperatureTF , with TF@TI . We present detailed results for the case ofTF5`, for which we have
succeeded in calculating the exact form ofS(q,t). For finiteTF , we present an approximation scheme for the
higher-order nonequilibrium correlation functions that leads to closure of the hierarchy of equations of motion.
The merits of this approximation are that~i! S(q,t) is guaranteed to satisfy an exact sum rule over the Brillouin
zone~BZ! of wave vectorsq, and~ii ! S(q,t) evolves to the correct value in the long-time limit. For antifer-
romagnetic coupling, the structure factor, initially dominated by the Bragg peak associated withTI at the edge
of the BZ, decays exponentially with time,e2t/tq while approximately preserving its shape inq space, since
the lifetimetq is nearly independent ofq. Except near the center of the BZ, after the Bragg peak has decayed
sufficiently, the dependence ofS(q,t) onq can be characterized as though the spins rapidly quasiequilibrate to
the equilibrium structure factor associated withTF , x(q,TF), in thatS(q,t)/x(q,TF) is independent ofq, but
is time dependent, slowly approaching unity ast21/2 for larget. Forq'0 the initial form ofS remains in effect
until the value oft is of orderq22. For ferromagnetic coupling, the initial Bragg peak forq'0 does not
preserve its shape while decaying exponentially, since the lifetimetq strongly depends on the wave-vectorq,
diverging asq22 for q→0, and, in particular, it is as though the spins forq'0 remain ‘‘frozen’’ at TI .
Analogous to the behavior for antiferromagnetic interactions, away from the center of the BZ, we find that
S(q,t)/x(q,TF) is independent ofq and is a function oft/tw , very slowly approaching unity. The character-
istic ‘‘waiting time’’ tw is anomalously long, proportional toj2, wherej is the equilibrium correlation length
at temperatureTI . This behavior of tw can be related to the random walk of domain boundaries.
@S1063-651X~96!00608-3#

PACS number~s!: 05.70.Ln, 64.60.Cn, 05.50.1q, 82.20.Mj

I. INTRODUCTION

The response of condensed-matter systems to rapid
changes in external parameters~temperature, for example! is
a challenging problem in nonequilibrium statistical mechan-
ics @1–4#. A well-studied example@1–5# is the spinodal de-
composition of a two-phase thermodynamic system sub-
jected to a quench from a temperatureTI ~above an ordering
temperatureTC! to a temperatureTF ~belowTC!. As a result
of the change in temperature, the initial system is no longer
thermodynamically stable and subsequently evolves into do-
mains of ordered phases as the system equilibrates at the
lower temperature. The interest in such nonequilibrium sys-
tems arises from the fact that, in analogy with critical phe-
nomena, the kinetics of domain formation for widely differ-
ent systems can be classified according to a few universal
growth laws, which depend only on conservation laws and
on such factors as the number of ordered phases that can
exist @4#. We note that, as a prefatory remark for the present
work, the word ‘‘nonequilibrium’’ has two distinct connota-
tions in the statistical physics literature. Nonequilibrium of-
ten refers to systemsslightly removed from equilibrium by
infinitesimal external influences; this is the well-known
linear-response regime@6# where, through the fluctuation-

dissipation theorem, the response of a system to first order in
the external driving force is related to equilibrium-averaged
time-correlation functions. Nonequilibrium, however, also
refers to systemsstronglyout of equilibrium@1–4,7# where a
large external perturbation is suddenly applied, thereby driv-
ing the system to a new configuration that is far removed
from its initial equilibrium state. Relatively little is known
about the subsequent time evolution of such systems toward
eventual equilibrium, precisely because thermodynamic sys-
tems subject to strong perturbations do not fall within the
linear-response regime. This article is concerned with one
specialized model system driven strongly out of equilibrium
for which an analysis of its time evolution can be performed.

A basic experimental probe of strongly nonequilibrium
systems is the nonequilibrium elastic-scattering structure fac-
tor S(q,t) wheret is the time@1–5#. This quantity@see Eq.
~2.8!# is the Fourier transform of the two-point, equal-time,
order-parameter correlation function, just as for the familiar
equilibrium structure factor,x(q,T), but evaluated in anon-
equilibrium ensemble. ThusS(q,t) monitors the instanta-
neous internal structure of the system as it evolves in time
from thermal equilibrium atTI to that atTF . During the
growth of domains, for example, it is found thatS(q,t)
obeys a time-dependent scaling relationS(q,t)}F[qL(t)]
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where F is a scaling function and whereL(t) is a time-
dependent length characterizing the average domain size
@1–4#. The latter quantity is generally found to have a power-
law time dependenceL(t)'tt for sufficiently larget, and the
exponentt can be used to define universality classes.

The nonequilibrium structure factorS(q,t) therefore sum-
marizes a wide range of interesting physical phenomena,
and, accordingly, there has been considerable effort devoted
to calculating this fundamental quantity for various models.
We note that such problems have been addressed through
direct numerical simulations@8#, with renormalization group
methods@9#, and in model calculations designed to empha-
size either the short- or the long-time regimes@10#. However
there appear to be very few model systems for whichS(q,t)
can be evaluatedexactly for all t. One model system for
which the exact form ofS(q,t) has been derived@11# is the
one-dimensional Glauber@12# spin-flip kinetic Ising model.
We note that Ising spinssi561, in spite of their simplicity,
provide an adequate description of the equilibrium properties
and phase diagrams of many systems, including systems of
adsorbed particles. It is highly desirable, therefore, to de-
velop kinetic Ising models ofS(q,t) to treat the strong non-
equilibrium behavior of Ising-like systems.

In this article, we provide a second kinetic Ising model for
which an exact expression forS(q,t) can be derived. We
calculateS(q,t) for the one-dimensional~1D! Kawasaki
spin-exchange kinetic Ising model@13,14# for a system with
nearest-neighbor interactions, initially in equilibrium at tem-
peratureTI , that is suddenly placed in contact with a heat
bath at temperatureTF , with TF.TI . In this model the total
number of particles in the system is conserved, and hence it
can be used, in its higher-dimensional versions, to provide a
description of, for example, the growth of ordered domains
in binary alloys or in systems of adsorbed atoms. We show,
among other results, that in the limitTF→` one can derive
the complete analytic expression forS(q,t) without invoking
any approximations. We also develop an approximate treat-
ment for finiteTF . Before we discuss these results further,
however, it will be useful to contrast the Kawasaki and
Glauber models, which are the two most widely studied ki-
netic Ising models. In the Glauber model, the allowed dy-
namical transitions of the system are restricted to single spin
flips. As a result, the Glauber model cannot describe hydro-
dynamic transport phenomena caused by long-range spatial
inhomogeneities, e.g., diffusion, since the total spin, or,
equivalently, the total number of particles in the system, is
not a conserved quantity. The Kawasaki model, on the other
hand, only allows for the simultaneous flip of two opposite
nearest-neighbor spins, so that they ‘‘exchange’’ values. This
mechanism does conserve the total spin and hence can be
used to model transport phenomena. As we will see, the se-
vere constraint imposed by this conservation law renders a
theoretical treatment ofS(q,t) nontrivial, even for the case
of a one-dimensional array of spins withTF set equal to
infinity.

Whereas Mazenko and Widom@11# were able to obtain
S(q,t) exactly for the one-dimensional Glauber model for
arbitraryTF , we are able to provide an exact solution for the
Kawasaki model only for the special valueTF5`. This is
due to the fundamentally different character of the dynamics
of these two systems discussed above. As we will show, for

arbitrary TF the equation of motion forS(q,t) in the one-
dimensional Kawasaki model includes an infinite number of
higher-order nonequilibrium correlation functions, besides
the two-spin correlation functions in terms of whichS(q,t)
is defined. By contrast, for the one-dimensional Glauber
model the equation of motion forS(q,t) contains only two-
spin correlation functions for allTF . Therefore to obtain
S(q,t) for the Kawasaki model, one would in principle have
to solve an infinite hierarchy of coupled kinetic equations for
the various correlation functions. WhenTF5`, however, it
happens that the hierarchy is explicitly truncated at the two-
spin correlation function level, and, as it turns out, the result-
ing equation of motion forS(q,t) can be solved without
approximation. To the best of our knowledge, there is no
other example in the literature of an exact solution forS(q,t)
in which the total number of particles in the system is con-
served.

In the context of the Kawasaki model withTF5`, the
dynamics that drives the system to its final state corresponds,
in the equivalent lattice-gas picture, to nearest-neighbor ran-
dom hopping with double site occupancy excluded. Such dy-
namical problems have received considerable attention in
their own right @15,16#. We note that while we explicitly
consider an initial state corresponding to thermal equilibrium
at temperatureTI , our method of solution is not restricted to
this case and could be applied to the evolution ofS(q,t) for
the disordering of an arbitrarily prepared initial state subject
to random hopping dynamics. Specifically, given an arbitrary
initial-state structure factor,S(q,0), the subsequent evolution
of S(q,t) by nearest-neighbor hopping can be calculated ex-
actly if TF5`.

For the case of generalTF , we present an approximation
scheme in Sec. III for the higher-order correlation functions
that leads to closure of the hierarchy of equations of motion.
We remark that the occurrence of infinite hierarchies of
coupled equations is widespread in many body theory and
that the associated issue of how to optimally terminate them
is a delicate and subtle problem. In particular, the qualitative
behavior ofS(q,t) can be very sensitive to the details of the
truncation procedure. We note, then, that our truncation
method preserves the following two important features:~i!
S(q,t) evolves to the correct value in the long-time limit and
~ii ! S(q,t) obeys an exact sum rule over the wave vectorsq
of the Brillouin zone~BZ!. Our major findings when we use
our truncation method are as follows. For the case ofanti-
ferromagneticcoupling, if the spins are initially in equilib-
rium at a sufficiently low temperature so thatS(q,t) exhibits
a strong Bragg peak forq'6p/a, wherea is the lattice
spacing, we find that the Bragg peakinitially decays propor-
tional to exp(2t/tq) while approximately preserving its
shapein q space. We also obtain an explicit expression for
the lifetimetq ; it is virtually independent ofq for q'6p/a.
We note that evidence for initial exponential decay of the
Bragg peak, with approximate shape preservation, has been
observed in experiment@17–19#. This is discussed further in
Sec. V. We also show that ifV(q)t>4, whereV(q) is a
wave-vector-dependent relaxation rate defined by~2.30!, the
dependence ofS(q,t) on q can be characterized as though
the spins have essentially equilibrated to the equilibrium
structure factor at the final temperature,x(q,TF). Specifi-
cally, when this inequality applies, the ratioS(q,t)/x(q,TF)
is independent ofq, but is time dependent and slowly ap-
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proaches unity from above, with the correction term decay-
ing with time ast21/2. For very smallq, becauseV(q) van-
ishes likeq2, this regime applies only for ultralong times.

For ferromagneticcoupling between the spins, the Bragg
peak for q'0 persists for an enormous time period. The
initial value,x(q,TI), although decaying as for antiferromag-
netic interactions in an exponential mannere2t/tq, the life-
time t q

2152V(q) diverges asq22 asq→0. This divergence
is a direct consequence of the spin-conserving dynamics for
the present model along with the sum rule obeyed byS(q,t).
In contrast to the result we obtain for antiferromagnetic in-
teractions, because of the strongq dependence oftq , the
Bragg peak forq'0 doesnot preserve its shape inq space
while decaying exponentially. Away from the center of the
BZ, we find thatS(q,t)/x(q,TF) is independent ofq and is
a function of t/tw , which rises very slowly to unity. The
characteristic ‘‘waiting time’’tw is anomalously long, pro-
portional toj2, wherej is the equilibrium correlation length
at temperatureTI . As shown in Sec. IV B 1, this behavior of
tw can be related to the random walk of domain boundaries.

It will be noted that for the problem considered here, the
usual order ofTI andTF considered in quench problems is
reversed, i.e., we are interested in the time evolution of an
initial equilibrium system after it is subject to a suddenin-
creasein temperature. We are motivated by experiments on
the disordering kinetics of initially ordered surface structures
in Si~100! @18,19#, where observations of the decay of the
‘‘satellite peak’’ inS(q,t), corresponding to a loss of surface
order, suggests a one-dimensional disordering process. A
preliminary listing of some of the results presented in Sec.
IV for the special case ofTF5` have been reported in Ref.
@18# without derivation.

The outline of this article is as follows. In Sec. II, we
briefly review the equilibrium properties of Ising spins that
will be of use, in particular, the equilibrium structure factor
x(q,T) and the sum rule it satisfies. We then define the non-
equilibrium structure factorS(q,t) and derive its exact equa-
tion of motion in the context of the Kawasaki spin-exchange
model. The quantityS(q,t) also satisfies a sum rule that will
be of fundamental significance in our analysis. In Sec. III we
present a truncation procedure that enables us to calculate
S(q,t) for any finite final temperature. In the context of this
procedure it is shown that the time evolution ofS(q,t) is
governed by the time dependence of the nonequilibrium,
nearest-neighbor two-spin correlation functionG(t). This
function satisfies an integral equation that we solve using
Laplace transform techniques. In Sec. IV, we focus on the
case where the spins are placed in contact with a heat reser-
voir at infinite temperature. For this case we can obtain the
exact form ofS(q,t) without invoking the truncation proce-
dure that we employ for finiteTF . We provide detailed nu-
merical results for the evolution ofS(q,t) and give its as-
ymptotic properties. Finally, in Sec. V we summarize our
results and discuss issues for further study. Appendix A is
devoted to establishing the properties of the dispersion inte-
gralF(w,t) that plays a major role in the analysis ofS(q,t).
In Appendix B we show that the methods developed in this
article can readily be adapted to provide the exact form of
S(q,t) for the Glauber kinetic Ising model which does not
possess a conserved variable. Once again the primary quan-

tities of physical interest are expressible in terms of the dis-
persion integralF(w,t).

II. FORMULATION OF MODEL

A. Equilibrium properties

We consider a one-dimensional lattice ofN Ising spins
si561. The equilibrium thermodynamic properties of this
system are well known, and we briefly review some of the
most salient results that will be used in later sections. Equi-
librium averages are constructed with the probability distri-
bution function,

P@s#5Z21exp~H@s#!, ~2.1!

whereZ is the partition function, and whereH@s# is the Ising
nearest-neighbor Hamiltonian multiplied by2b521/kBT,

H@s#5K(
i51

N

s is i11 ~sN11[s1! ~2.2!

with K[bJ denoting the nearest-neighbor coupling con-
stant, whereJ is the exchange interaction strength. Note that
~anti!ferromagnetic spin couplings are implied by~K,0!
K.0. It will be convenient to assume an infinite lattice
~N→`!, for which the system has a critical point at zero
temperature. For the nonequilibrium problem, to be dis-
cussed below, the final state of the system is associated with
a coupling constantKF , and we will study the evolution that
results from the sudden change in coupling constant,
K5KI→KF , starting from an initial valueKI , with
uKI u.uKFu.

In the following, we will require the two-spin equilibrium
correlation function@20#:

^s is j&5@ tanh~K !# u i2 j u[uu i2 j u, ~2.3!

where the brackets denote an average with respect toP@s#
and where we have introduced the symbolu[tanh(K). We
see from~2.3! that the correlation length governing the ex-
ponential decay of the two-spin correlation function is given
by j215ln@coth(uKu)#. We will also require the Fourier spin
transforms(q) which can serve as a general order param-
eter,

s~q!5N21/2(
n

exp~ iqna!sn , ~2.4!

where q is restricted to the one-dimensional BZ, 0<uqu
<p/a, and wherea is the lattice spacing.~Henceforth we
choosea51.! Note that the ferromagnetic order parameter is
recovered by considering the limitq→0, while the antiferro-
magnetic order parameter is obtained in the limitq→p. This
can readily be seen from the equilibrium elastic-scattering
structure factorx(q,T), which measures the spectrum of
fluctuations in equilibrium at temperatureT,

x~q,T!5^s~2q!s~q!&. ~2.5!

Evaluation ofx(q,T) using ~2.3! and ~2.4! is straightfor-
ward, and in the limitN→` one obtains
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x~q,T!5
A12g2

12g cosq
, ~2.6!

whereg[tanh(2K)52u/(11u2). For K.0, we haveg→1
in the low-temperature limit andx diverges forq→0, i.e., the
system is dominated by long-wavelength fluctuations. By
contrast, forK,0, g→21 for low temperatures, andx di-
verges forq→p, i.e., antiferromagnetic ordering develops in
this limit. We see from~2.6! that x is invariant under the
transformationK→2K andq→p2q. For q50 andq5p,
then, the peak value ofx is given by e2uKu, whereas the
corresponding minimum value atq5p andq50 is e22uKu.

The quantityx(q,T) defined by~2.5! and given in~2.6!
satisfies a temperature-independent sum rule,

E
2p

p

dq x~q,T!52p. ~2.7!

This result is a direct consequence of the requirement that at
each lattice siten, the Ising fixed-length spin condition
s n

251 is satisfied. Henceforth, we will use the abbreviated
notationx(q) to denote the equilibrium structure factor~2.6!.

B. Nonequilibrium structure factor

The dynamical response to a rapid change in temperature
from TI to TF can be characterized by the nonequilibrium
structure factorS(q,t;TI ,TF) which is defined as

S~q,t;TI ,TF!5(
$s%

s~2q!s~q!P@s,t#[^s~2q!s~q!& t

5112(
n51

`

^s0sn& tcos~nq!, ~2.8!

where P[s,t] is a time-dependent probability distribution
that depends onTI andTF and is specified below, and where
the subscript on the angular brackets denotes a nonequilib-
rium ensemble average with respect toP[s,t] @21#. Note
that ~2.8! is simply the nonequilibrium generalization of the
static structure factor defined by~2.5!, i.e., it is the Fourier
transform of the equal-time, two-spin correlation function
evaluated in a nonequilibrium ensemble. This quantity can
be measured in real-time elastic-scattering experiments after
a rapid change in external parameters, typically by monitor-
ing the evolution of a Bragg peak@1–4#. An important con-
straint on our analysis is that a sum rule analogous to~2.7!
holds forS(q,t;TI ,TF), i.e.,

E
2p

p

dq S~q,t;TI ,TF!52p. ~2.9!

This too is a consequence of the Ising fixed-length spin con-
dition. Note that~2.9! holds for all times. Henceforth, we
will generally abbreviate our notation and denote the non-
equilibrium structure factor byS(q,t).

We remark thatS(q,t) should not be confused with the
dynamic structure factor, which is theequilibrium-averaged,
inelastic-scattering structure factor, which we denote by
C(q,t,T). That structure factor is the Fourier transform of
the two-spin time-correlation function,

C~q,t,T!5^s~2q,0!s~q,t !&

5C0~ t,T!12(
n51

`

Cn~ t,T!cos~nq!, ~2.10!

whereCn(t,T)[^s0(0)sn(t)& is the correlation of a spin at
lattice site 0 at timet50 with a spin at siten at time t
evaluated in anequilibrium ensemble. In the following, we
will simplify our notation and suppress the variableT, i.e.,
we write C(q,t) andCn(t). We will calculate and discuss
C(q,t) in Sec. II D because of its heuristic value in antici-
pating results forS(q,t) that are given in later sections.

The first task we face, in order to deriveS(q,t), is to
establish the form of the nonequilibrium probability distribu-
tion functionP[s,t]. In kinetic Ising models this quantity is
taken to satisfy a Markovian master equation@14#, which, in
operator form, we denote by

]

]t
P@s,t#5 (

$s8%

D@sus8#P@s8,t#[DsP@s,t#, ~2.11!

where the operatorDs contains the typical gain and loss
transition rates of a master equation, in this case assumed to
arise from the interactions between the spin system and a
heat reservoir. OnceDs is specified,P[s,t] is formally
given by @22#

P@s,t#5exp~Dst !PI@s#, ~2.12!

where we have chosen the initial condition
P[s,t50]5PI [s], with PI@s# the equilibrium distribution
characterized by the initial-state coupling constantKI . The
quantityDs is a matrix operator in the 2

N-dimensional space
of spin configurations, and is constructed so as to exhibit the
specified spin dynamics, in our case a nearest-neighbor spin
exchange, as well as to satisfy the requirement thatP[s,t]
evolves to the correct long-time limit, the equilibrium distri-
bution PF@s# characterized by the final-state coupling con-
stantKF . The latter requirement is fulfilled by constructing
Ds so that it satisfies detailed balance about the final-state
equilibrium, i.e.,D[sus8]PF[s8]5D[s8us]PF[s], which
is sufficient to show thatPF remains stationary, i.e.,
DsPF[s]50. Note that in the most straightforward imple-
mentation of detailed balance,Ds is a function only ofKF
and is independent ofKI . In the next subsection we derive
an explicit analytic representation ofDs for the one-
dimensional Kawasaki kinetic Ising model.

Combining~2.8! and ~2.12!, we obtain a formal equation
of motion forS(q,t),

]

]t
S~q,t !5(

$s%
s~2q!s~q!DsP@s,t#

[^D̃s@s~2q!s~q!#& t , ~2.13!

where D̃s is the adjoint of Ds , with matrix elements
D̃[sus8][D[s8us]. The quantityD̃s is the effective time-
derivative operator for observables~i.e., spin functions! @23#,
whereasDs operates on distribution functions. The complete
expression for~2.13! is fairly involved and is derived in the
next subsection. In Sec. III we discuss the solution to~2.13!,
subject to the constraint~2.9!.
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C. Equation of motion

In this subsection we review those elements of the theory
of kinetic Ising models that are necessary to derive the equa-
tion of motion for S(q,t), Eq. ~2.13!. The reader uninter-
ested in the details should proceed to~2.28!.

As mentioned above, kinetic Ising models are defined by
assuming thatP[s,t] satisfies a Markov master equation.
Master equations have the general ‘‘gain-loss’’ form@24#

]P@s,t#

]t
5 (

$s8%

~W@sus8#P@s8,t#2W@s8us#P@s,t# !

5 (
$s8%

SW@sus8#2ds,s8(
$s9%

W@s9us8# D P@s8,t#

[ (
$s8%

D@sus8#P@s8,t#[DsP@s,t#, ~2.14!

where the quantitiesW@sus8# give the probability per unit
time for a transition from the state of the system$s8% to the
state$s%. In the Markov approximation, the transition prob-
abilities are functions only of the current configuration of the
spins, and not the history of the system. For the Kawasaki
spin-exchange model@14#, the allowed transitions are re-
stricted to the simultaneous flip~‘‘exchange’’! of two spins
of opposite values. This ensures that the total spin is con-
served during transitions. We can therefore write the basic
form of the master equation operator@25,26# as

D@sus8#5 1
2(
i , j

ds,s8
@ i , j # Di , j@sus8#, ~2.15!

where the sum is over pairs of spinsi , j , and the quantity

ds,s8
@ i , j #

5 )
kÞ i , j

1

2
~11sksk8! ~2.16!

ensures that all spinsexceptthose at sitesi and j remain
unchanged. The operatorDs therefore describes the stochas-
tic exchange of all pairs of spinsi and j while the rest of the
spins remain momentarily fixed. From the form of~2.14!, we
can write the operator describing the exchange of spinsi and
j as

Di , j@sus8#5Wi , j~s8!~ds i ,s j8
ds j ,s i8

2ds i ,s i8
ds j ,s j8

!,

~2.17!

where the first set ofd functions ensures the spin-exchange
mechanisms j8→s i ands i8→s j , andWi , j ~s8! is the prob-
ability per unit time for the exchange. Using the spin repre-
sentation of the Kronecker functionds i ,s j8

5 1
2(11s is j8) we

obtain the explicit expression,

Di , j@sus8#52 1
4Wi , j~s8!~s i2s j !~s i82s j8!. ~2.18!

Restricting ourselves now to nearest-neighbor spin exchange,
the form of the master equation operator is given by

D@sus8#52 1
8(

i
(

n561
Wi ,i1v~s8!ds,s8

@ i ,i1n#

3~s i2s i1n!~s i82s i1n8 !, ~2.19!

where the sum onn is over nearest neighbors. This expres-
sion corrects that given in Ref.@26#, which differs by an
overall factor of two. An essential requirement for any mas-
ter equation is that the normalization of the probability dis-
tribution be conserved in time; from~2.14! this is satisfied if
(
$s%

D@sus8#50. This basic requirement is readily seen to be

satisfied by~2.19!.
We have yet to specify the transition probability function

W. The simplest form ofW for nearest-neighbor spin ex-
change in one dimension is that due to Zwerger@27#

Wi ,i1n~s!5aF12
1

2
gF~s i2ns i1s i1ns i12n!G , ~2.20!

wheregF5tanh(2KF), anda is an overall frequency setting
the spin-exchange rate for uncoupled spins and is taken as a
phenomenological parameter of the model. In Sec. II D, it is
shown thata can be identified as the spin-diffusion coeffi-
cient in the high-temperature limit. Equation~2.20! is a suf-
ficient, but not necessary, condition to guarantee that detailed
balance is satisfied in the final-state equilibrium. Detailed
balance does not uniquely determine the form ofW and
hence there is some freedom in choosing this function: It can
be multiplied by any spin function that is independent ofsi
and si1n and still satisfy detailed balance. Therefore, de-
pending on the precise form ofW, classes of generalized
kinetic Ising models can be defined that are consistent with
the basic constraint of detailed balance@28#. As shown by
Mazenko and Oguz@29#, the Zwerger form~2.20! results in
the least complicated nonlinearities in the single-spin equa-
tion of motion, which is our reason for adopting this form.
Note, however, that results forS(q,t) derived forKF50 do
not depend on the functional form ofW. In this limit, W
reduces to a constant transition rate,independentof the local
spin configurations, which, we note, corresponds to unbiased
random hopping in the associated lattice-gas picture.

To evaluate the equation of motion forS(q,t) ~2.13! one
must first have the basic dynamical equations obeyed by
Ising spins for spin-exchange kinetics. Using~2.19!, and the
definition of the adjoint operatorD̃[sus8][D[s8us] @see
discussion around~2.13!#, the equation of motion for a single
spin can be derived,

D̃ss i52 (
n561

Wi ,i1n~s!~s i2s i1n!. ~2.21!

The interpretation of~2.21! as the time rate of change for a
single spin is transparent: Spin exchange is blocked when
nearest-neighbor spins are in the same state; when exchange
can occur, it does so with a probability determined through
detailed balance by the difference in energy environments
that would result from the exchange. Note that by summing
~2.21! over all lattice sites, the total spin is manifestly con-
served for all temperatures.
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Besides the single-spin equation of motion,~2.21!, we
will also require the equation of motion for the product of
two spins. Using~2.19!, the following can be derived:

D̃ss is j5s i D̃ss j1s j D̃ss i

12 (
n561

~d j ,i2d j ,i1n!Wi ,i1n~s!~12s is i1n!.

~2.22!

The last group of terms in~2.22! serve the following pur-
poses. Ifj5 i , the result should be zero sinces i

251; this is
guaranteed by thedj ,i term. Thedj ,i1n term reflects a locally
conserved quantity under the exchange process: The product
of two nearest-neighbor spins should remain invariant to in-
ternal permutation. Thedj ,i1n term insures that the product
of nearest-neighbor spins evolves only through exchange
with the ‘‘outside’’ neighbors. We note that these seemingly
innocuous terms play an extremely important role in the
theory. If either or both of these terms were absent from the
equation of motion~2.22!, S(q,t) would not evolve to the
correct steady-state solution, namely, the equilibrium struc-
ture factor evaluated at the final temperaturex(q,TF).

We can now derive the equation of motion forS(q,t). By
substituting~2.20! in ~2.21!, the explicit single-spin equation
of motion is given by

D̃ss i52aH 2s i2s i212s i111
1

2
gF~s i222s i212s i11

1s i12!1
1

2
gF~2s i21s is i112s i22s i21s i

2s is i11s i12!J , ~2.23!

which we note contains nonlinear, three-spin terms in addi-
tion to single-spin terms. Upon Fourier transforming~2.23!,
we have

D̃ss~q!52v~q!s~q!22agFsin
2~q/2!V~q!, ~2.24!

where v(q) is a temperature- and wave-vector-dependent
frequency,

v~q!52a sin2~q/2!@2~12gFcosq!2gF#, ~2.25!

and whereV(q) is the Fourier transform of the three-spin
term,

V~q![N21/2(
n

exp~ iqn!sn21snsn11 . ~2.26!

We note that if we had employed a transition probability
function other than~2.20!, additional nonlinear terms@29#
besidesV(q) would occur in~2.24!. Note that the right-hand
side of ~2.24! decreases continuously to zero asq→0, inde-
pendent of the temperature. This is a direct manifestation of
the conservation law. Now, upon Fourier transforming~2.22!
we obtain,

D̃ss~2q!s~q!52s~2q!D̃ss~q!

1
2

N (
i ,n

@12exp~ iqv !#Wi ,i1n~s!

3~12s is i1n!, ~2.27!

which is what is required in~2.13!. We remark that the form
of the spin-exchange operator~2.19! is general and describes
the Kawasaki spin dynamics on an arbitrary dimensional lat-
tice, for any choice of the transition probability functionW.
Equations~2.21!, ~2.22!, and~2.27!, which are derived using
~2.19!, are therefore also general equations of motion for the
nearest-neighbor Kawasaki kinetic Ising model, irrespective
of the dimensionality of the lattice and the form ofW. For
our one-dimensional model, combining~2.24! and~2.27! to-
gether with the Zwerger transition probability~2.20!, we ob-
tain the desired equation of motion,

]S~q,t !

]t
522v~q!S~q,t !24agFsin

2~q/2!^s~2q!V~q!& t

18a sin2~q/2!@12~11gF!F1~ t !1gFF2~ t !#,

~2.28!

whereFm(t)[^s0sm& t for m51,2 are the nonequilibrium
nearest-neighbor and next-nearest-neighbor correlation func-
tions, respectively.

We see from~2.28! that the equation of motion forS(q,t)
generates a complicated four-spin nonequilibrium correlation
function ^s(2q)V(q)& t . We stress that this term represents
an infinite sum of four-spin correlations, as can be seen from
the identity,

^s~2q!V~q!& t5F2~ t !12(
n51

`

^s21s0s1sn& tcos~nq!.

~2.29!

In principle, therefore, to solve~2.28! one would have to
obtain an equation of motion for general four-spin products,
which, in turn, would couple to six-spin terms. In general,
one would have to solve aninfinite hierarchyof coupled
kinetic equations for the various nonequilibrium correlation
functions. We note that this is in contrast to the equation of
motion obeyed byS(q,t) for Glauber dynamics~see Appen-
dix B! which involvesonly two-spin correlation functions.
To make progress, then, some means of truncating the hier-
archy must be found. A specific proposal is presented and
implemented in Sec. III.

For the special case of infinite final temperatureKF50 an
exactsolution forS(q,t) becomes possible since the hierar-
chy is explicitly terminated, i.e.,~2.28! will involve only
two-spin terms. The form ofS(q,t) in this special case is
discussed in Sec. IV. Note that in this limit~KF50!, the
single-spin equation of motion~2.23! reduces to the usual
equation of motion for random hopping dynamics@15,16#.

Returning to the general case~KFÞ0!, it will be useful to
rewrite the equation of motion~2.28! in a form in which it
can be explicitly seen thatS(q,t) approaches the correct
long-time limit, and in addition, formally satisfies the sum
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rule ~2.9!. We first introduce a new characteristic frequency
4aV(q) where the dimensionless quantityV(q) is defined as

V~q![~12gFcosq!sin2~q/2!, ~2.30!

so thatv(q)54aV(q)22ag sin2~q/2! in ~2.25!. Then, uti-
lizing ~2.8! and ~2.29!, together with~2.30!, and the follow-
ing result that holds in equilibrium:

V~q!x~q,TF!5sin2~q/2!F11
gF

2
2~11gF!F1~`!

1
gF

2
F2~`!G , ~2.31!

whereFm(`)5u F
m, it is easy to show from~2.28! that the

equation of motion is given by

]S~q,t !

]t
528a sin2~q/2!@~12gFcosq!$S~q,t !2x~q,TF!%

1gFW~q,t !1G~ t !#. ~2.32!

The quantitiesW(q,t) andG(t) are defined as

W~q,t ![ (
n52

`

@^s21s0s1sn& t2^s0sn& t#cos~nq!, ~2.33!

and

G~ t ![~11gF!@F1~ t !2uF#2
gF

2
@F2~ t !2uF

2 #. ~2.34!

We first see from~2.32! that S(q,t) will evolve to the
correct long-time limit only if the quantityW(q,t) vanishes
in equilibriumW(q,`)50. This does indeed occur because
of a special property of equilibrium correlation functions for
the one-dimensional Ising model with nearest-neighbor inter-
actions and zero magnetic field@30#,

^s21s0s1sn&5^s0sn& ~ unu>1!. ~2.35!

Thus the terms in~2.33! all vanish in the long-time limit, i.e.,
W(q,`)50. We note therefore that any proposed approxi-
mation for the four-spinnonequilibrium correlation func-
tions, e.g., for truncating the hierarchy discussed above, must
preserve this property, i.e., that the differences
^s21s0s1sn& t2^s0sn& t vanish in the long-time limit, in
order for the approximateS(q,t) to evolve to the correct
long-time value.

We also see that the infinite series in~2.33! starts with the
term n52, because then51 term vanishes identically. This
has an important consequence. By integrating over all wave-
vectorsq in the BZ, it is easy to check that the sum rule~2.9!
is formally obeyed by~2.32!, as well as by~2.28!. The ad-
vantage of~2.32!, however, is that the sum rule will be sat-
isfied independentof the values of the terms inW(q,t); this
is true only becauseW(q,t) excludes then51 term. This is
an important theoretical result. It guarantees that, no matter
what approximation we devise for the four-spin correlation
functions, the ensuing approximate result forS(q,t) will sat-
isfy the same sum rule~2.9! as does the exact solution.

Finally, we note that by writingv(q) 54aV(q)
22ag sin2~q/2! in ~2.28! we can group together the terms in
the equation of motion in a way that reveals some important
features that would not have been readily transparent other-
wise. The quantityv(q) cannot properly be interpreted as a
relaxation rate, since, as seen from~2.25!, it becomes nega-
tive for various combinations of temperature and wave vec-
tor, namely, whenever 2~12gF cosq!,gF . This seeming oc-
currence of an instability is specious, however, and
underscores that the single-spin functions(q) is not an
eigenmode of the dynamics, as can be seen from~2.24!.
Moreover, the higher-order spin correlation functions play an
important role in providing overall stability, since it is
known @31# that if the operatorD̃s satisfies detailed balance,
its eigenvalues are all real and negative~or nonpositive! and
hence the evolution ofS(q,t) is bounded for all times. On
the other hand, the quantityV(q) defined by~2.30! is posi-
tive for all temperatures and wave vectors, and thus it prop-
erly serves as a relaxation rate.

Equations~2.32!–~2.34! provide the exact equation of
motion for S(q,t) in the Kawasaki-Zwerger model. These
equations serve as the starting point for the truncation pro-
posal we present in Sec. III. Before proceeding to that pro-
posal, however, we devote the following subsection to a heu-
ristic discussion of the expected long-time behavior of
S(q,t) using the asymptotic properties of the equilibrium
time-correlation functions.

D. Asymptotic analysis of time-correlation functions

To have a better understanding of the results given in
Secs. III and IV for the nonequilibrium structure factor
S(q,t) it will be useful to examine at an arbitrary tempera-
ture the asymptotic properties of the time-correlation func-
tions of equilibrium fluctuations produced by the spin-
exchange dynamics. This is because, for the nonequilibrium
system, in the asymptotic approach to equilibrium, one
would intuitively expect a close relationship between the
long-time form of nonequilibrium ensemble averages and the
time-correlation functions of spontaneous fluctuations about
equilibrium. Indeed, this is the qualitative content of the On-
sager regression hypothesis@6,32#. We therefore expect that
the long-time form of the strongly nonequilibrium response
will coincide with theasymptotictime dependence predicted
by linear-response theory, i.e., by the dynamics of equilib-
rium fluctuations. Information about the dynamics of equi-
librium fluctuations can be extracted from the dynamic struc-
ture factorC(q,t) given in ~2.10!, and we will examine this
quantity in this subsection. We remark, however, that the
properties of the equilibrium time-correlation functions can
only yield insight into the asymptotic form of the nonequi-
librium response; an analysis of the dynamics of equilibrium
fluctuations clearly cannot serve as a substitute for solving
the nonequilibrium problem. For example, the results of this
subsection cannot yield information about the time required
after the sudden change in the heat bath for the onset of the
asymptotic approach to equilibrium.

The asymptotic decay of the equilibrium time-correlation
functionsCn(t) in ~2.10! can be established if we know the
form of C(q,t), since, using~2.10!, we have
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Cn~ t !5
1

2p E
2p

p

dq exp~2 inq!C~q,t !. ~2.36!

Now C(q,t) can be most easily obtained by considering the
Laplace transform

C̃~q,s!5E
0

`

dt exp~2st!C~q,t ![Lt@C~q,t !#.

~2.37!

In the memory function representation@6#, the transform
C̃(q,s) is written as

C̃~q,s!5
x~q!

s1w~q,s!
. ~2.38!

The quantityw(q,s), the memory function, is a generalized
space- and time-dependent relaxation rate and contains all
the information about the dynamics of the system in the
linear-response regime. In general,w(q,s) is a complicated
object involving higher-order dynamical correlation func-
tions; an explicit expression is given in Ref.@33#. In particu-
lar, w(q,s) cannot be obtained in closed form for this model,
which is a direct consequence of the infinite hierarchy dis-
cussed in Sec. II C. We can, however, rigorously establish
the form of the memory function asq→0, which is what we
require to find the asymptotic properties of the time-
dependent correlation functionsCn(t). First, we know that
w(q,s) will vanish asq2 asq→0 because of the conservation
law. Hence we can write thatw(q,s)5q2D(q,s) where
D(q,s) is nonzero asq→0. For smallq, then, the Laplace
transform C̃(q,s) has a ‘‘hydrodynamic’’ pole at
s52q2D(0,0)1O(q4) provided thatD(0,s) is well be-
haved ass→0. As shown by Mazenko and Oguz@29#, how-
ever, for the Zwerger modelD(q,s) is independentof s for
small q. We may therefore setD(0,0)5D, whereD is the
diffusion coefficient,

D[Lim
s→0

Lim
q→0

q22w~q,s!5a~12u!~12g!, ~2.39!

where we have given the exact value ofD that results for this
model@27,29#. Note that the parametera can be identified as
the diffusion coefficient in the high-temperature limit. By
taking the inverse Laplace transform ofC̃(q,s) we thus ar-
rive at the key result, that for smallq and all timest, the
leading form of the structure factorC(q,t) is given by,

C~q,t !;x~q!exp~2Dq2t ! ~q→0!. ~2.40!

We note that this is precisely the form thatC(q,t) would
adopt had we started with the continuum diffusion equation,
instead of the lattice-based spin-exchange kinetic Ising
model. In the following we will refer to an approximate,
‘‘hydrodynamic’’ structure factor,CH(q,t), which we define
to have the form~2.40! throughout the BZ, as well as hydro-
dynamic correlation functions,Cn

H(t) defined by using
~2.36! in conjunction withCH(q,t). We will show that in
many cases this approximation is remarkably accurate.

We first examine the simplest case of infinite temperature
for whichx~q,T5`!51 for all q, andD5a; we consider the
case of generalT below. Thatx(q) is independent ofq ex-

presses the fact that in the high-temperature limit there is no
permanent structure to the system at any length scale. Dy-
namically, however,C(q,t) measures the temporal correla-
tion of spatially separated fluctuations. As we will see, that
there is a nontrivial time dependence to the spin correlations
in this noninteracting limit is a reflection of the conservation
law, which in essence enforces adynamiccorrelation be-
tween spatially separated spins. This dynamic coupling ef-
fect can clearly be seen from the correlation functionsCn(t)
which we examine first in the hydrodynamic approximation.

It is convenient to introduce a local time variable, appro-
priate to the lattice siten, defined bytn[2at/n2. Using
~2.36! and the definition ofCH(q,t) we have

nCn
H~ t !5

1

p E
0

np

du expS 2
1

2
u2tnD cosu. ~2.41!

If tnn
2>2 we may extend the upper limit to infinity so that

we obtain

nCn
H~ t !5~2ptn!

21/2 exp@21/~2tn!#, tnn
2>2. ~2.42!

This result states that the quantitiesnCn
H(t), if plotted versus

the local time variabletn , will be given by a single universal
curve as long astnn

2>2. This approximate scaling formula
is a lattice analog of theexactscaling property satisfied by
the solutions to the usual diffusion equation~which is the
continuum limit of a lattice random walk! for a d-function
initial condition,C(r ,t)5(4pDt)21/2 exp~2r 2/4Dt!.

It is of interest to compare the result of~2.42!, which we
obtained within the hydrodynamic approximation, with the
exact result fornCn(t) for the special case ofT5`. In this
limit we can obtain the exact memory function
w(q,s)54a sin2(q/2! since in this cases(q) is an eigenmode
of the dynamics@see~2.24!# @34#. We then have the exact
result for allq and all t,

C~q,t !5exp@24a sin2~q/2!t# ~T5`! ~2.43!

which, we note, is consistent with~2.40! for small q. Com-
bining ~2.36! and ~2.43!, we have the exact expression,

Cn~ t !5
1

2p E
2p

p

dq exp@24at sin2~q/2!2 iqn#. ~2.44!

This integral is readily evaluated to yield

Cn~ t !5exp~22at !I n~2at ! ~T5`!, ~2.45!

where I n is a modified Bessel function. An analysis of the
integral representation~2.44! shows that fortnn

2>2, this
equation reduces to the scaling formula~2.42! that we ob-
tained in the hydrodynamic approximation. Note also, from
~2.45!, thatCn(0)5dn,0, as should be the case in the high-
temperature limit. We can see, however, that starting att50,
spatially separated spinsdevelopcorrelations because of the
spin-conserving dynamics. This dynamic correlation effect is
evident in Fig. 1.

The correlation function~2.45! will be recognized as the
probability distribution for a one-dimensional continuous-
time random walk that starts at the origin@15#. This is not
surprising given the connection between the Kawasaki model
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at T5` and nearest-neighbor random hopping. Thus two
spins that interact by a random walk process, initially sepa-
rated byn lattice sites, should be most strongly correlated
after a characteristic time proportional ton2. We can thus
expect that all of the correlation functionsCn should have a
maximum for virtually the same value of the local time vari-
able tn52at/n2. In fact, Montroll @35# showed that, for
largen, ~2.45! is maximized when the value of the indepen-
dent variable 2at is given byn211/21O(1/n), i.e., when,
tn;111/(2n2)1O(1/n3). All of these properties are con-
sistent with our earlier remark thatCn is most appropriately
considered as a function of a local time variable, appropriate
to the lattice siten.

We display in Fig. 1 the quantitiesnCn(t) @obtained from
~2.45!# plotted against the local time variabletn . Also shown
are the results obtained from~2.42!, denoted by the1 sym-
bols. It is quite remarkable that the hydrodynamic result is in
effect, at least forn>2, for such early times. We also have,
from either ~2.45! and the asymptotic properties of Bessel
functions, or from~2.42!, that

nCn~ t !;~2ptn!
21/2 ~tn@1, T5`!. ~2.46!

This quantity is shown in Fig. 1 as the dashed curve.
For an arbitrary finite value of the temperature, the analy-

sis of Cn(t) is considerably more complicated and we will
present only the asymptotic form ofCn(t) for long times, the
analog of ~2.46!. For long times only the small-q regime
contributes to~2.36!. It is then legitimate to extend the limits
of integration in~2.36! to 6`, use~2.40!, and replacex(q)
by x~0!. We thus obtain,

Cn~ t !;
1

2p E
2`

`

dq x~q!exp@2Dq2t2 iqn#

;
x~0!

A4pDt
, ~Dt@L2!, ~2.47!

whereL is a length defined as follows. For ferromagnetic
interactions,L5max~n,j!, i.e.,L5j,n for n,,.j. Herej is
the equilibrium correlation length, given by
j215ln~cothK!;exp~22K! asK→`. For antiferromagnetic
interactions, however,L5n. We see that for sufficiently long
times,Cn(t) decays with at21/2 power-law form, a result
that is solely a consequence of the conservation law in one
dimension. Note that the time required before the onset of
the t21/2 regime depends on the temperature as well as onn.
From ~2.39!, for ferromagnetic interactions and for low tem-
peratures,D vanishes asD;aj23 and hence asj→` the
‘‘waiting time’’ obtained from~2.47! D21j2 diverges@36# as
j5. For antiferromagnetic interactions,D→4a for low tem-
peratures, and one attains thet21/2 regime relatively rapidly.

The main result of this subsection is that at all tempera-
tures, for sufficiently long timesDt@L2 the equilibrium
time-correlation functionsCn(t) are described by thet21/2

power-law form, a result that follows directly from the dy-
namics that features a conserved mode. As discussed at the
beginning of this subsection, this leads us to expect similar
behavior for the nonequilibrium structure factorS(q,t) in the
long-time limit. Specifically, in the asymptotic approach to
equilibrium, we expect thatS(q,t) will also be characterized
by diffusive behavior, the signature of which is at21/2 time
dependence in one dimension. This asymptotic power-law
form is indeed found in the results derived below. We will
find however that the time required toattain the asymptotic
regime depends strongly on the initial temperatureTI and the
sign of the coupling constant.

III. DETERMINATION OF S„q,t…

A. Preliminaries

In Sec. II C we derived the equation of motion~2.32!
satisfied by the nonequilibrium structure factorS(q,t) for the
present model upon assuming that the system is suddenly
exposed to a heat bath at a temperatureTF . In the remainder
of this article the dimensionless quantity 4at will be denoted
by t so that the equation of motion reads

]S~q,t !

]t
522 sin2~q/2!@~12gFcosq!$S~q,t !2x~q,TF!%

1G~ t !1gFW~q,t !#, ~3.1!

whereW(q,t) andG(t) are given by~2.33! and ~2.34!, re-
spectively. We remind the reader thatW andG depend onTI
andTF , as well as the arguments explicitly listed. As dis-
cussed in Sec. II C, the integral*2p

p dq W(q,t)sin2~q/2! van-
ishes for all times. Thus, if we integrate~3.1! on q over the
BZ, the integral*2p

p dq S(q,t) will be time-independent as
long as we require that

G~ t !52
1

p E
2p

p

dq8@S~q8,t !2x~q8,TF!#V~q8!, ~3.2!

FIG. 1. Product of the lattice-site indexn with the time-
correlation functionsCn(t), given by ~2.45!, as a function of the
dimensionless local time variabletn[2at/n2. The arrow identifies
the curve forn51, while those forn52, 3, and 4 are nested suc-
cessively. The curves forn>2 andtn.2 are very well described by
the universal curve~2.42!, shown as1 symbols. The dashed curve
shows the leading asymptotic term,~2.46!, for nCn(t) that follows
from ~2.42! or ~2.45!. The correlations are maximized at approxi-
mately tn'1, confirming the picture that the spins interact by a
random walk process.
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whereV(q) is defined by~2.30!. That is, any solution of
~3.1! which also satisfies~3.2! will at all times satisfy the
sum rule ~2.9!, so long as the proposed initial form for
S(q,0) satisfies that rule. Also note that if one combines
~3.1! and ~3.2!, the rate of change]S(q,t)/]t depends not
only on the current value ofS(q,t), but also on the current
value ofS(q8,t) for all other wave vectorsq8 within the BZ.
Put differently, the role of the sum rule~2.9! is to cause the
equation of motion to be highly nonlocal inq space, even
though it is local in time~i.e., Markovian!.

In Sec. II C we also pointed out that the four-spin non-
equilibrium correlation function,̂s21s0s1sn& t , which ap-
pears in the definition~2.33! of W(q,t), satisfies an equation
of motion involving still other, higher-spin nonequilibrium
functions. In particular,~3.1! is but the first of an infinite
hierarchy of equations of motion. For the present model, the
only case where one can avoid this hierarchy without invok-
ing a truncation procedure is when the final temperatureTF
is infinitely large, so that the parametergF vanishes. In par-
ticular, the forms of̂ s21s0s1sn& t andF2(t) are irrelevant
whenTF5` and ~3.1! reduces to

]S~q,t !

]t
522 sin2~q/2!@S~q,t !211G~ t !# ~TF5`!.

~3.3!

In Sec. IV we provide a detailed analysis of~3.3! and ~3.2!
leading to the exact analytical form of bothS(q,t) and
G(t)5F1(t) for this special case.

In the next subsection we present an approximation pro-
cedure for arbitraryfinite TF that truncates the hierarchy at
the level of nonequilibrium two-spin correlation functions.
We summarize here the major results that emerge upon as-
suming that the spins are initially in equilibrium. For the case
of antiferromagnetic interactions, ifTI is sufficiently low, the
initial peak inS(q,t) at first decays exponentially while ap-
proximately retaining its original shape. As time proceeds,
this gives way to the following. In the regimeV(q)t.4,
S(q,t) exhibits ‘‘quasiequilibrated’’ behavior S(q,t)/
x(q,TF)'A(t) independent ofq, whereA(t) evolves to-
wards unity with a power-lawt21/2 decay. In the vicinity of
the center of the BZ,S(q,t) retains its original~numerically,
very small! form for extremely long times, untilt.O(q22).
For the case of ferromagnetic interactions, the initial peak
nearq'0 also decays exponentially but with a decay time
proportional toq22. The original shape of the peak is thus
not preserved as time proceeds due to the conservation law
that forcesS(0,t) to remain constant. In the regimeV(q)t
.4, S(q,t) also exhibits quasiequilibrated behavior
S(q,t)/x(q,TF)'F(t/tw) except that the time is scaled in
units of a ‘‘waiting time’’ tw . These issues are explored in
detail in Sec. III C.

B. Truncation procedure for finite TF

With the exception of a handful of special cases~e.g., the
1D Glauber model; see Appendix B!, all theories of the non-
equilibrium structure factor must confront the issue of trun-
cating an infinite hierarchy of equations of motion, and some
approaches have proven successful~as an example, the
Langer, Bar-on, and Miller theory@37#!. We note, however,
that the qualitative behavior of the ensuing approximate

equations of motion can be extremely sensitive to the details
of the truncation scheme. Thus, the long-time steady-state
solution may be incorrect, or the approximate theory may
only be valid for long wavelengths. For the present system,
an exact treatment for an arbitrary finite final temperature
appears to be hopelessly intractable. It is therefore of interest
to develop an approximation forW(q,t) that is rigorously
valid whenever the system is in thermal equilibrium, i.e., for
t50 and for t5`. This will be sufficient to ensure that the
result forS(q,t), obtained using the approximate theory, will
in fact evolve to the correct long-time value, namely,
S(q,t)→x(q,TF) as t→`.

We replace the four-spin function̂s21s0s1sn& t in
~2.33! by the two-spin function̂s0sn& t . That is, we impose
on the nonequilibrium four-spin function the same equality
with the nonequilibrium two-spin function as applies@see
~2.35!# for the thermal equilibrium versions of these spin
functions for any temperature for the one-dimensional
nearest-neighbor Ising model. As a consequence of this pro-
cedure the functionW(q,t) vanishes identically and~3.1!
reduces to

]S~q,t !

]t
522 sin2~q/2!@~12gFcosq!$S~q,t !2x~q,TF!%

1G~ t !#. ~3.4!

We stress that while~3.4! is in general an approximate equa-
tion of motion, it is rigorously valid att50 and att5` for
arbitrary finiteTF . It is also rigorously valid for all times
whenTF5`. In essence, our truncation procedure consists of
constraining the time evolution of the four-spin nonequilib-
rium correlation functionas if this function at any moment of
time is characterized by a common, global time-dependent
temperature@38# that ultimately reaches the final valueTF .
We remark thatW(q,t) is not identically zero forTF5`;
only becausegF50 is ~3.4! rigorously valid in the high-
temperature limit. In the next paragraph, however, we give
arguments thatW(q,t)[0 should be a good approximation
for this system.

We have already remarked that the approximation
W(q,t)[0 is compatible with bothS(q,t) achieving its cor-
rect long-time value, and the sum rule~2.9! being satisfied.
In this paragraph we provide arguments that even in an exact
treatmentW(q,t) is not expected to contribute appreciably to
the evolution ofS(q,t) @39#. We note that our basic approxi-
mation,^s21s0s1sn& t'^s0sn& t will, for all times and tem-
peratures, become progressively more accurate asn in-
creases. Only for relatively small values ofunu should the
correlation ofsn with s0 differ appreciablyfrom the corre-
lation ofsn with the local group of spinss21s0s1. Hence, in
the functionW(q,t), which is the Fourier transform of the
differences^s21s0s1sn& t2^s0sn& t , @see ~2.33!#, we ex-
pect the terms in the summation to decay rapidly after some
characteristic value ofn. For this reason, we do not expect
W(q,t) to ever become large, as for example compared with
S(q,t). Furthermore, for a given value ofn, this approxima-
tion will also become more accurate the lower the tempera-
ture, since in this case the product of spinss21s0s1 will
effectively have the same value as the spins0 for both ferro-
and antiferromagnetic couplings. Thus, for low temperatures,
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we expect that the effective number of terms in~2.33! to
achieve convergence ofW(q,t) will be reducedover that for
higher temperatures. This is in direct contrast to the behavior
of S(q,t), where, because long-range correlations are in-
duced at low temperatures, progressively more and more
terms must be included in~2.8! to achieve convergence, and
we obtain the strong peaks in this function forq50 and
q5p. This implies, then, that thesamecircumstances that
lead to strong peaks inS(q,t) will also result inW(q,t)
being relatively small for all wave vectors. Hence, we expect
thatW(q,t) starting from itsexact initial valueW(q,0)50,
will remain small compared toS(q,t) before it eventually
decays to zero for long times. We therefore believe that
W(q,t)50 ~for all times! is an excellent approximation for
this system.

Our task now reduces to solving the pair of Eqs.~3.4! and
~3.2!. The procedure we invoke consists of solving~3.4! for
S(q,t), treatingG(t) as a given function, and then imposing
~3.2! upon the solution. Following this procedure we find
thatG(t) satisfies the Volterra integral equation~3.7! given
below. The kernel of that integral equation is of convolution
form,and thus we will be able to find@see Sec. III D# the
exact solution by invoking Laplace transform methods. We
now turn to the details.

The formal solution of~3.4! is given by

S~q,t !5S~q,0!e22V~q!t1x~q,TF!~12e22V~q!t!2J~q,t !,
~3.5!

where

J~q,t ![2 sin2~q/2!E
0

t

dt8 G~ t8!exp@22V~q!~ t2t8!#.

~3.6!

In writing ~3.5!, the initial form ofS has been left arbitrary,
other than satisfying the obligatory sum rule~2.9!. Substitut-
ing ~3.5! in ~3.2!, one finds that the unknown functionG(t)
satisfies a Volterra integral equation of the first kind@40,41#

E
0

t

dt P~ t2t!G~t!5Q~ t !, ~3.7!

where the kernel is given by

P~ t !52E
2p

p

dq sin2~q/2!exp@22V~q!t#, ~3.8!

and

Q~ t !5E
2p

p

dq@S~q,0!2x~q,TF!#exp@22V~q!t#. ~3.9!

The initial and final forms ofS appear in the functionQ(t),
and we note thatQ~0!50 as a consequence of~2.9!. We use
Laplace transforms in Sec. III D to solve~3.7! for G(t) as
well as to obtain an expression forJ(q,t) using ~3.6!.

To assess the significance of the termJ(q,t) in ~3.5!, it is
useful to invoke one of the standard mean-value theorems
@42# for integrals. Given an integral of the form
* a
bdt g(t)h(t), where in the closed interval [a,b] bothg and

h are continuous andh does not change sign, then

* a
bdt g(t)h(t)5g(xM)* a

bdt h(t) for at least one valuexM
in [a,b]. We may thus rewrite~3.6! as

J~q,t !52 sin2~q/2!G~jqt !E
0

t

dt8exp@22V~q!~ t2t8!#

5G~jqt !~12gFcosq!21$12exp~22V~q!t#%,

~3.10!

wherejq is a number in the interval@0,1# that depends ont
as well as the value ofq. Using~2.6! and~3.10!, we arrive at
the following exact, alternate representation of~3.5!,

S~q,t !5S~q,0!e22V~q!t1x~q,TF!@12G~jqt !~12gF
2 !21/2#

3~12e22V~q!t!. ~3.11!

Generally, in the remainder of this section we suppose
that the system is initially in thermal equilibrium at tempera-
ture TI , so that in ~3.11! we may make the replacement
S(q,0)5x(q,TI). Thus in the next subsection we will focus
our attention on

S~q,t !5x~q,TI !e
22V~q!t1x~q,TF!

3@12G~jqt !~12gF
2 !21/2#~12e22V~q!t!.

~3.118!

We will also suppose thatTI!TF , and in particular that
uKI u5uJu/(kBTI!>2 and uKFu5uJu/(kBTF)<0.5. Thus, for
ferromagnetic~antiferromagnetic! coupling between spins,
we havex(q,TI)@x(q,TF) for q'0 ~q'6p!, whereas in
the remainder of the BZ we havex(q,TI)!x(q,TF).

C. General properties ofS

In the following we establish some general properties of
S(q,t) that can be inferred even prior to deriving the detailed
form ofG(t) andJ(q,t). Only in Sec. III D do we provide a
detailed derivation of those functions.

1. Exponential time decay of initial correlations

Consider first the case of antiferromagnetic interactions
and wave-vectorsuqu'p. Note that for suchq we can replace
V(q) by V~p!511gF in the first term of~3.118!. The large
peak inS for uqu'p initially decays exponentially with time,
with a time constantt2152~11gF! independent ofq. The
first term of ~3.118! can thus play a dominant role over a
lengthy time interval measured by when that term has de-
creased sufficiently so as to become of the same order of
magnitude as the second term. We also note that for these
values of q, and for the time interval just described, as
S(q,t) decreases with time, its initial shape
S(q,0)5x(q,TI) is preserved. Specifically, a semilog plot of
S(q,t)/x(q,TI) will exhibit a linear dependence ont with
slope 2~11gF!, independentof q for wave vectors suffi-
ciently close to the BZ boundaries. We will discuss this re-
sult in Sec. IV for the caseTF5` and in Sec. V for general
temperatures, especially with regard to experimental evi-
dence@18,19# for this behavior.

By contrast, for ferromagnetic interactions, att50 we
haveS(q,0)5x(q,TI), featuring a sharp peak forq'0. Con-
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sidering a small, fixed value ofuqu featuringx(q,TI)@1, we
note from ~3.118! that as t increases from zero, the time
dependence ofS features exponential decay, with a time con-
stant given byt q

2152V(q). Indeed, one can essentially ig-
nore the second term of~3.118! for a large multiple oftq ,
until such a time that the first term has decreased to become
of the same order asx(q,TF). Clearlytq diverges asq

22 for
q→0. Because of this strong dependence onq there is no
shape preservation of the decaying peak, as occurs for the
case of antiferromagnetic interactions.

Binder @43# has given heuristic arguments that, if the final
state is in a disordered phase and for wave vectors in the
hydrodynamical regime,S(q,t) should maintain exponential
decay behavior even fort→`. Such a form, however, i.e.,
~3.5! with J(q,t) identically zero, would be correct only if
G(t) itself were identically zero, in contradiction to the in-
tegral equation~3.7! which is a direct consequence of the
sum rule~2.9!. That is,exponential decay in the long-time
limit cannot occur for the spin-conserving kinetic Ising
model and still satisfy the sum rule. We anticipate that a
similar statement applies for higher-dimensional systems.
The asymptotic behavior ofS for large times is treated in
Sec. III D 2. We show thatJ(q,t) decreases to zero for long
times ast21/2; however, the onset time for this behavior de-
pends onq and grows asq22 for q→0. Hence, for any non-
zero value ofq, at sufficiently long times the termJ(q,t)
will greatly dominate over the decaying exponential in~3.5!.
Nevertheless, exponential time dependence does provide an
accurate description of the time evolution of the structure
factor during the first stage, and as we have seen, the dura-
tion of this stage increases monotonically with decreasingq,
growing asq22 for q→0.

2. Quasiequilibrated spins [V„q…t>4]

The result~3.5! for S(q,t) calls for the evaluation of the
function J(q,t) defined by~3.6!, and in turn, the function
G(t) which is the solution of the integral equation~3.7!. The
subsequent development, centered on the mean-value theo-
rem, led to the results~3.11! and ~3.118!, which are fully
equivalent to~3.5!. The form of~3.11! hints at the possibility
that some of the major qualitative properties ofS(q,t) can be
established even at this stage prior to the full calculation of
J(q,t) and G(t). We base this remark on the fact that a
knowledge of theq and t dependence of the parameterjq is
fully equivalent to possessing the functionJ(q,t), yet this
parameter lies in the range@0,1# and is surely a continuous
function of its variables. This hint is confirmed in the follow-
ing.

We show thatjq gradually increases witht and ap-
proaches unity from below, and more specifically,
G(jqt)'G(t) if V(q)t>4. This greatly simplifies~3.118!
and allows us to arrive at an important general result, even
prior to obtaining the explicit form ofG(t). It should be
noted that the regimeV(q)t>4 commences at a relatively
early timet'4/~11gF! for wave vectors near the edge of the
BZ and for increasingly later times deeper within the zone.
For values ofq in the immediate vicinity of the center of the
BZ where V(q) is vanishingly small, the requirement
V(q)t>4 will be met only at extremely late times. In the
case of ferromagnetic interactions, whenV(q)t>4 we may
discard the first term of~3.118! because the numerical value

of x(q,TI) is negligible except forq'0. For the case of
antiferromagnetic interactions we must retain the first term
of ~3.118! despite the smallness ofe22V(q)t sincex(q,TI) is
very large foruqu'p and thus this term can dwarf the second
term over an extended time interval.

In the regimeV(q)t>4, the factore22V(q)(t2t8) in ~3.6!
is very small except in the immediate vicinity of the upper
limit, namely, t8't. We may therefore replace the function
G(t8) by G(t), with the result

J~q,t !'2 sin2~q/2!G~ t !E
0

t

dt8exp@22V~q!~ t2t8!#

'G~ t !~12gFcosq!21 @V~q!t>4#. ~3.12!

Comparing with~3.10! we then have that

G~jqt !'G~ t ! @V~q!t>4# ~3.13!

so that, as claimed, the parameterjq increases with time and
jq'1 for V(q)t>4. An immediate consequence of~3.13! is
that we may legitimately approximate the exact result~3.118!
by

S~q,t !'x~q,TI !e
22V~q!t1@12G~ t !~12gF

2 !21/2#x~q,TF!

@V~q!t>4#. ~3.14!

The interesting feature of~3.14! is the second term whose
dependence onq bears the signature of the heat bath at the
temperatureTF . We may say, onceV(q)t>4, that the spins
have essentially equilibrated to their final temperature.
There is a multiplicative time-dependent amplitude
@12G(t)(12g F

2)21/2# that very gradually approaches unity
for long times. This factor will be smaller~larger! than unity
for ferromagnetic~antiferromagnetic! interactions. This can
readily be seen as a direct manifestation of the underlying
spin-conserving dynamics for this model. For values ofq in
the immediate vicinity of the center of the BZ whereV(q) is
vanishingly small, the requirementV(q)t>4 will be met
only at extremely late times. Thus, for the antiferromagnet,
to compensate for the ‘‘hole’’ in the values ofS for very
small values ofuqu, which persists for an enormously long-
time period, and yet to satisfy the sum rule~2.9!, the above
amplitude factor must be larger than unity, i.e.,G,0. On the
other hand, for the ferromagnet where initiallyS is very large
for small values ofuqu, to satisfy the sum rule, the amplitude
must be smaller than unity, i.e.,G.0. We will find in Sec.
III D 2 by an asymptotic analysis of the solution of the inte-
gral equation~3.7!, thatS decreases ast21/2 for long times.
The power-law exponent21/2 is due to the fact that for
small q, the conditionV(q)t>4 is equivalent toq>At21/2

whereA is a constant.
The key result of this subsection is that at late times the

time dependence ofS(q,t) is governed by that of the short-
range correlation functions contained inG(t).

3. The regime S„q,t…/x„q,TF…!1

Using ~2.6! one may rewrite the equation of motion~3.4!
as
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]S~q,t !

]t
52 sin2~q/2!$~12gF

2 !1/2@12S~q,t !/x~q,TF!#

2G~ t !%. ~3.15!

Now, in a regime whereS(q,t)/x(q,TF)!1 we may inte-
grate~3.15! so as to obtain the approximate relation

S~q,t !'x~q,TI !12 sin2~q/2!F ~12gF
2 !1/2t2E

0

t

dt8G~ t8!G .
~3.16!

Inspecting this result we may conclude that~3.16! should
apply in the regime where bothx(q,TI)/x(q,TF) and
t sin2~q/2! are small compared to unity. In that regime the
departure of S(q,t) from x(q,TI) is proportional to
sin2~q/2!, with a time-dependent proportionality constant.
For antiferromagnetic interactions this behavior will apply
even for relatively long times for values ofuqu in the imme-
diate center of the BZ. For the case of ferromagnetic inter-
actions, the conditionS(q,t)/x(q,TF)!1 will apply for val-
ues ofq which are not near the center of the BZ yet fulfill the
condition thatt sin2~q/2! be small compared to unity. The
applicable range ofq values rapidly shrinks with time.

D. Determination of S„q,t…

1. Solution of integral equation (3.8)

In the preceding subsection we were able to arrive at a
number of significant conclusions concerningS(q,t) without
establishing the detailed properties ofG(t) and J(q,t). In
this subsection we determine both of these functions by pro-
viding the formal solution of the integral equation~3.7! for
an arbitrary choice of the initial functionS(q,0) and any
value ofTF . The left side of~3.7! is a convolution integral,
so that g(s)5q(s)/p(s), where g, p, and q denote the
Laplace transforms ofG, P, andQ, respectively, defined by
~2.37!. Now

q~s!5E
2p

p

dq@S~q,0!2x~q,TF!#@s12V~q!#21, ~3.17!

and

p~s!52E
2p

p

dq sin2~q/2!@s12V~q!#21. ~3.18!

Thus,

G~ t !5Lt
21H p21~s!E

2p

p

dq@S~q,0!2x~q,TF!#

3@s12V~q!#21J , ~3.19!

whereL t
21 denotes the inverse Laplace transform, which can

be expressed in terms of the standard Bromwich contour@44#
chosen to the right of all singularities of the integrand.

We will now show that~3.19! may be reduced to a sim-
pler form ~3.21! upon exploiting the analytic properties of
p(s) andq(s). Both of these functions are expressed as dis-
persion integrals, so each is an analytic function ofs, with

the exception of a branch cut extending from the origin to
22Vmax, whereVmax denotes the maximum value of the
function V(q). Referring to ~2.30!, one finds that
Vmax511gF for gF>21/3, Vmax5~11ugFu!2/~8ugFu! for
21<gF<21/3. Furthermore, becauseS(q,0), x(q,TF), and
V(q) are real quantities, we have that [p(s)] *5p(s* ), with
a similar relation applying forq(s), and thus also forq(s)/
p(s). Given these properties ofp andq, the ratioq(s)/p(s)
is also analytic ins except for the branch cut just described;
it would have isolated poles corresponding to zeros ofp(s),
if such were to exist. However,p(s) has no zeros. To show
this we obtain an explicit expression forp21(s) using the
substitution cosq5(12y)/(11y) in ~3.18! and Eq.
~3.197.1! of Ref. @45#, with the result

p21~s!5~4p!21@s12~11gF!#1/2$@s112gF2D~s!#1/2

1@s112gF1D~s!#1/2%, ~3.20!

whereD(s)[[(12gF)
224gFs]

1/2. Clearlyp21(s) remains
finite for all finite values ofs.

In view of the above properties one may alter the
s-integration~Bromwich! contour in~3.19! so as to proceed
from 2` to 0 along a line parallel to but slightly below the
negative real axis, and then back to2` on a similar line
slightly above that axis. The contributions of each integral
from the intervals~2`6i0,22Vmax6i0# cancel, with the re-
sult

G~ t !52
1

p E
22Vmax

0

ds estImH p21~s1 i0!E
2p

p

dq@S~q,0!

2x~q,TF!#@s1 i012V~q!#21J . ~3.21!

The functionJ(q,t) is in principle determined by~3.6! once
G(t) is known. In practice, a simpler approach is to exploit
the convolution form of~3.6! so as to obtain

J~q,t !52 sin2~q/2!Lt
21
„q~s!/$p~s!@s12V~q!#%…. ~3.22!

2. Asymptotic behavior

The leading asymptotic behavior ofG(t) for large t is
easily obtained from~3.19!. In this regime only the segment
of the negative reals axis adjacent to the origin is of any
consequence. For this segment we may replacep(s1 i0) by
p~0!52p~12g F

2!21/2, S(q,0)2x(q,TF) by its value for
q50, V(q)'(12gF)q

2/4, and use the following result,
which is valid for negative reals of sufficiently small mag-
nitude,

ImE
2p

p

dq
1

s1 i01~12gF!~q2/2!
52pF 2

~12gF!usuG
1/2

.

~3.23!

Thus, the leading term for larget, of the asymptotic expan-
sion of ~3.21! is given by

G~ t !;S 11gF

2p D 1/2@S~0,0!2x~0,TF!#t21/2. ~3.24!
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In particular, this function decays according to a square-root
power law, as we have claimed earlier in this article. Finally,
combining~3.12! and ~3.24! provides an asymptotic expres-
sion for J(q,t) for the regimeV(q)t>4.

In the following section we specialize to the caseTF5`
and suppose that the system initially is in thermal equilib-
rium at a temperatureTI , so thatS(q,0)5x(q,TI). We de-
rive exact formulas forG(t) andJ(q,t) for arbitrary values
of t. The detailed analysis for arbitrary times whenTF is
finite will be presented elsewhere.

IV. EXACT SOLUTION FOR TF5`

A. Preliminaries

In Sec. II we remarked that the exact equation of motion
~2.32! for S(q,t), or ~3.1! in terms of the dimensionless time
variable, takes on a particularly simple form if the system is
suddenly placed in contact with a heat bath at infinite tem-
perature. In this case the parametergF5tanh(2KF) vanishes,
~2.34! givesG(t)5F1(t), the equation of motion~3.1! re-
duces to~3.3!, andG(t) satisfies the integral equation~3.7!.
The functionsP(t) andQ(t) appearing in that equation are
defined by~3.8! and ~3.9!, where nowV(q)5sin2~q/2!. The
key feature is that for this choiceTF5` without invoking
any approximations,S(q,t) is rigorously decoupled from
higher-order spin correlation functions. In this section we
derive the detailed properties ofS.

We remark that withgF50 several of the equations in
Sec. II greatly simplify. Thus, the quantityWi ,i1n , given by
~2.20!, reduces to a constantWi ,i1n5a, while the single-spin

equation of motion ~2.24! reduces to D̃ss(q)
524a sin2(q/2)s(q). In particular,s(q) is an eigenvector

of the operator D̃s , corresponding to the eigenvalue
24a sin2~q/2!. The specific dependence of this eigenvalue
on wave vector is a direct consequence of the spin-
conserving dynamics of this model. That such a simple result
emerges is of course due to the fact that the master equation
operatorD@sus8# of ~2.19!, reduces to a quadratic form in the
spin variables. To an extent one can rephrase this property in
the language of standard many-body theory, that whengF50
the quartic coupling between spins vanishes and the equation
of motion can be described in terms of independent single
spins. However, this analogy is not complete, since, first, the
two-spin objectS(q,t) is not an eigenvector of the dynamics
in this limit, and, second, to obtainS we must yet solve the
integral equation forG so as to satisfy the global constraint
~2.9!. As we shall see, in the following this renders the cal-
culation ofS(q,t) nontrivial. As we have remarked previ-
ously, the Glauber model is solvable without approximation
for anyvalue ofTF ; for that model the corresponding master
equation operatorD@sus8# is always quadratic in the spin
variables~see Appendix B!.

B. Determination of G„t…

In this subsection we obtain detailed results forG(t) start-
ing from the general result~3.21!. For the present case of
TF5`, recalling thatV(q)5sin2~q/2!, we haveVmax51, as
well asx(q,TF)51, andS(q,0) is given by~2.6!. We also
have that~3.20! reduces to

p21~s!5
1

4p
@s121s1/2~s12!1/2#. ~4.1!

It is then fairly straightforward to show thatG(t) may be
written as

G~ t !5~12u!F~u,t !, ~4.2!

where the functionF is defined by

F~w,t!5
1

2p E
0

1

dx
exp~22tx!

x1w
@~12x!/x#1/2 ~4.3!

for arbitrary values of the complex variablew. The quantity
u[(12u)2/(4u) is a parametrization of the coupling
strengthK, which can be reexpressed in terms of the corre-
lation lengthj as

u~K !5 H sinh2@~2j!21#
2cosh2@~2j!21#

~K.0!

~K,0!. ~4.4!

Here u is to be evaluated using the coupling constantK
corresponding to theinitial temperatureTI . Note that
u.0~,21!, for K.0~,0!, respectively. To arrive at~4.3!
starting from~3.21! we first performed the integration over
q, noting that (s1 i0)1/25(2s)1/2i for values ofs on the
segment~22,0! of the reals axis, and introduced the inte-
gration variablex52s/2.

In Appendix A we discuss in detail the major properties
and provide a number of useful expansions of the functionF
defined in~4.3!. One of the most computationally effective
expansions is~A21!, which is of the Neumann type, with the
result that~4.2! may be written as

G~ t !5e2tFuI0~ t !1~11u!(
k51

`

ukI k~ t !G . ~4.5!

Obviously~4.5! reduces to the correct initial valueG(0)5u
@see~2.34!# since I k(0)5dk,0. For a given value oft, this
series converges more rapidly the higher the value of the
initial temperature corresponding to smaller values of the
parameteru. Also note that the modified Bessel functions
I k(t) decay extremely rapidly with increasingk for k.t.
Thus, if the timet is not too large one can achieve results of
high numerical accuracy by summing a relatively small num-
ber of terms in the series~4.5!. However this process be-
comes rather lengthy for large values oft. An accurate
method for calculating values ofI k(t) consists of using the
standard Taylor series expansion@Eq. ~9.6.10! of Ref. @46##.
All terms of that series are positive, so round-off problems
do not arise. However, a far more efficient procedure con-
sists of the following. We calculateI 0(t) using its Taylor
series, and then use a recurrence formula@Eq. ~9.6.26! of
Ref. @46## to obtain values of the ratiosr k5I k11/I k for each
desired value of the argumentt. To avoid crippling numeri-
cal instabilities it is necessary to invoke a backward iteration
@47# method. One then hasI k115I 0r 0r 1•••r k .

Another numerically effective and physically insightful
approach for calculatingG(t) for t.4 consists of employing
~A23! for K.0, and ~A24! for K,0. The details of this
approach are given in the following paragraphs.
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1. Ferromagnetic spin coupling

We consider first the case of ferromagnetic spin interac-
tions ~K.0!. Using ~4.2! and ~A23! we have fort>4

G~ t !;u1/2exp~ t/tw!erfc@~ t/tw!1/2#, ~4.6!

where tw[~2u!21. Numerical comparisons between the ap-
proximate result~4.6! and the exact Neumann expansion
~4.5! shows that the former provides anexcellentapproxima-
tion toG(t) for times satisfyingt.4, although the accuracy
depends somewhat on the initial temperatureTI . Note that
the t50 value of ~4.6! is Au, whereas the exact result is
given byG(0)5u. Thus, the lower the value of the initial
temperature, the closer are the initial values for the two
cases, and the better that~4.6! approximates~4.2!, even for
t,4.

The formula~4.6! exhibits an important scaling property,
namely, that the time evolution of the nonequilibrium
nearest-neighbor correlation function is expressible solely in
terms of the dimensionless variablet/tw . The physical origin
of the characteristic timetw is as follows. In the initial state,
where the system is in equilibrium at a temperatureTI , the
ferromagnetic spin coupling gives rise to ordered domains
with a characteristic size of the order of the initial correlation
length j215ln~cothK! governing the exponential decay of
the equilibrium correlation function~2.3!. For low initial
temperaturesj'exp(2K). Upon suddenly raising the tem-
perature toTF5`, the domains begin to decompose as a
result of spin exchanges, which, we note, initially occur
solely at theboundariesbetween the domains of oppositely
aligned spins. Because of the form of the dynamics for
KF50, the spin-exchange probability is independent of the
local spin configuration@see ~2.20!#. Hence if the nearest-
neighbor pair of spins at the domain boundaries have flipped,
there is equal probability of either recovering their previous
configuration, or for continuing spin exchanges to gradually
propagate into the interior of the two original domains. This
can be pictured in terms of the domain boundaries perform-
ing independent random walks@48#. One therefore expects
that the time to randomize a domain of sizej by spin ex-
changes will be on order ofa21j2'~au!21, and the latter is
consistent with our definition of the~dimensionless! time tw .
In short, the scaling property explicit in~4.6! is an expres-
sion of the fact that the constraint of a conserved order pa-
rameter ensures that the time evolution of the ferromagnetic
spin correlations proceeds by the random walk of domain
boundaries as the mechanism for the demise of the domains.
We can then see from~3.14! that for long times the evolution
of S(q,t) will also exhibit this scaling property. In the ab-
sence of the requirement of a conserved order parameter, the
domains would be disrupted by spontaneous spin flips within
the interior of the domain, and this scaling property would
not hold for such systems. Similar statements can be ex-
pected to apply for the two- and three-dimensional variants
of this model.

The limiting form of ~4.6! for times such thatt@tw is
given by

G~ t !;
u

12u
~pt/2!21/2, ~4.7!

and we obtain the expectedt21/2 time dependence. Equation
~4.7! is in accord with~3.24! in this limit. Note that the value
of tw grows extremely rapidly as the initial temperature is
reduced. For example, the values oftw for K50.1, 1.0, 1.5,
2.0, and 3.0 are 0.24, 26.8, 200, 1488, and 81376, respec-
tively. Thus, although the scaling form of~4.6! is already in
effect for t>4, the power-law form~4.7! becomes operative
for the low-temperature regime only forextremelylate times.

In Fig. 2 we show the time dependence ofG(t)/G(0)
computed from~4.5! for ferromagnetic~K.0! spin interac-
tions. Each curve is labeled by the value ofK employed in
the calculation. The curves we would obtain using the scal-
ing formula ~4.6! are indistinguishable in the figure from
those shown. As noted in the preceding paragraph, for
K52,3 the values oftw are so large as to be off the scale
shown in Fig. 2. The existence of such long waiting times for
the ferromagnetic system, initially prepared at low tempera-
tures, despite the fact that the system has been placed in
contact with a heat bath at temperatureTF5`, is a direct
consequence of the spin-exchange dynamics of the model.

2. Antiferromagnetic spin coupling

We now provide the analog of~4.6! for the case of anti-
ferromagnetic interactions~K,0! so thatu, given by ~4.4!,
satisfies the inequalityu,21. Using ~4.2! as well as the
asymptotic formula~A24!, we obtain as the leading behavior
in the regimet.4

G~ t !;
2uuu
11uuu ~pt/2!21/2. ~4.8!

Superficially, the asymptotic formulas~4.7! and~4.8! appear
to agree. Note however, that~4.7! applies only fort@tw .
The waiting timetw is very large, for the same value ofTI ,
compared to the timet'4 where~4.8! applies. That is, in the
antiferromagnetic case there is no significant waiting time
for the domains to randomize, and one obtains the power-law
form almost immediately, namely, fort.4. These properties
are evident in Fig. 3 where we show the time dependence of
G(t)/G(0) for K,0. The solid curves correspond to the ex-

FIG. 2. Time dependence of the nonequilibrium nearest-
neighbor correlation functionG(t)/G~0! for ferromagnetic spin
coupling, as given by~4.2!. Each curve is labeled by the value ofK
used in the calculation.
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act values ofG(t)/G(0), while the dashed curves are ob-
tained using the asymptotic expression~4.8!. Note that the
power-law form is well obeyed fort.4. We note that in
contrast to the ferromagnetic case,G(t) decaysfaster the
lower the initial temperature. This is to be expected since the
more ordered the initial antiferromagnetic state, the more
rapidly the structure is disrupted by the near-neighbor spin-
exchange process.

C. Determination of S„q,t…

The remaining task to be performed so as to determine
S(q,t) is to establish the form of the functionJ(q,t) given
by ~3.6!. Once this is achieved we have@see~3.5!#

S~q,t !511@x~q,TI !21#exp@22t sin2~q/2!#2J~q,t !.
~4.9!

Probably the simplest way to proceed is to substitute in~3.6!
for the functionG using ~4.2! and ~4.3! and to interchange
the order of the integrations. The calculation is fairly
straightforward upon using the identity

E
0

1

dxS 12x

x D 1/2 1

x1w
5pF S 11w

w D 1/221G , ~4.10!

which applies for arbitrary values of the complex variablew.
For the special case thatw approaches the interval~21,0! of
the real axis,~4.10! can be used to yield the relation

PE
0

1

dxS 12x

x D 1/2 1

x1w
52p, ~4.11!

where P denotes principal value. With the aid of these iden-
tities and exploiting a partial fraction decomposition of the
rational form 1/@~x1u!~x2sin2q/2!#, one finds

J~q,t !5
sin2q/2

u1sin2q/2 H ~12u!$F~u,t !2ReF@2sin2~q/2!

6 i0,t#%2
1

2
~11u!e22t sin2q/2J . ~4.12!

As is evident from~3.6!, J(q,0) must vanish. Using~A4! and
~A22! one finds F(u,0)5u/(12u) and F@2sin2~q/
2!,0#521/2, so that this requirement is satisfied.

Combining~4.12! with ~4.9! givesS(q,t). These formulas
can be simplified greatly in the caseq5p. Indeed, we have
special interest in the time dependence ofS(p,t) for antifer-
romagnetic interactions. For this special value ofq, starting
from ~A16!, one can show that

S~p,t !511@x~p,TI !21#e2ut2~12u!t
d

dt
@e2tI 0~ t !#

1O„~11u!2…. ~4.13!

This formula is useful for allt and for very small values of
TI , where we haveu'21 andu'21 for antiferromagnetic
interactions. We shall use it in our discussion in the follow-
ing paragraph. Note that the term containing the factor
t(d/dt)[e2tI 0(t)] may be approximated as~2pt!21/2 for
t>2, explicitly showing once again the slow power-law de-
cay that applies after the initial Bragg peak has decayed suf-
ficiently.

We now summarize our major results forS(q,t). In Fig.
4~a! we show values ofS(q,t) as a function of wave vector
for the antiferromagnetic with initial couplingKI523 in the
immediate vicinity of the BZ boundary for the dimensionless
times 0, 0.25, 0.5, 1.0. The numerical values ofS(q,t) were
obtained using~4.9!, ~4.12!, and the Neumann expansions
~A21! and ~A22!. The calculated values for the special case
q5p are in excellent quantitative agreement with~4.13!,
which is to be expected since the coefficient~11u!2 of the
neglected correction term in that equation is 2.431025. The
rapid decrease of the initial Bragg peak with time is note-
worthy. The qualitative discussion in Sec. III C 1 leads to the
conclusion that in the first stage this decrease should proceed
in an exponential fashion, with a characteristic time that is
essentially independent of wave vector. In particular, the
shape of the decaying Bragg peak should be preserved and a
semilog plot ofS(q,t)/x(q,TI) should exhibit a linear de-
pendence ont. This predicted behavior is confirmed by the
data shown in Fig. 4~b! for early times, approximatelyt<1.5.
Subsequently the curves for different wave vectors fan out
and the decay proceeds at a much slower rate. In this time
regime the further decay of the Bragg peak should proceed as
t21/2. This feature is in fact supported by our computed data.

In Fig. 5 we provide data forS(q,t) for all wave vectors
in the BZ, again forKI523. The approximate behavior in
the regime wheret sin2~q/2! is small compared to unity has
been discussed in Sec. III C 3, and the results are summa-
rized by ~3.16!. For uqu<0.8p the first term in~3.16!, the
initial susceptibility, is negligibly small, and we can expect
that theq dependence will be proportional to sin2~q/2!. The
amplitude of this term is given by 2[t2* 0

t dt8 G(t8)], which
is dominated by linear growth. The data shown in Fig. 5 are
consistent with these predictions. As time progresses and

FIG. 3. Time dependence ofG(t)/G~0! for antiferromagnetic
spin coupling as given by the exact result~4.2!, ~solid curves!, as
well as the asymptotic formula~4.8!, ~dashed curves!, for the la-
beled values ofK. The asymptotic regime commences fort'4.
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t sin2~q/2! is no longer small compared to unity, in fact when
V(q)t>4, we may use~3.14!. Except in the immediate vi-
cinity of the BZ boundary we may neglect the first term of
that equation. For the present case ofTF5` we havegF50
and x(q,TF)51 for all q. Thus for V(q)t>4, we have
S(q,t)'12G(t). In particularS is independent ofq and
very slowly ~like t21/2 for large t!, decreasestowards unity,
becauseG(t),0 for antiferromagnetic interactions. This pre-
dicted plateaulike behavior is confirmed by the data shown
for t>4. As expected, even for the timet5400, foruqu'0 the
structure factor remains ‘‘frozen’’ at its initial value, since
for a small value ofq, one reaches the regimeV(q)t>4 only
whent>16q22. This behavior is due to the combined effects
of the vanishing ofV(q) like q2 for smallq and the require-
ment of the sum rule~2.9!.

In Fig. 6 we display our results for ferromagnetic interac-
tions for initial couplingKI53. The persistence of the Bragg
peak for uqu'0 is very dramatic and, as discussed in Sec.
III C 1, it follows from the fact that although the decay is
exponential, the corresponding time constant is given by

tq;2q22, which diverges forq→0. For uqu>0.2p the dis-
played data shows plateaulike behaviorS(q,t)'12G(t)
sinceV(q)t>4 for the times considered. An increase to-
wards unity is to be expected sinceG is positive for all t.
However, this rate of increase towards unity is extremely
small, because of the corresponding slow decay of the Bragg
peak along with the constraint of the sum rule~2.9!. As dis-
cussed in Sec. IV B 1, the functionG(t) is given by ~4.6!.

FIG. 4. ~a! Wave-vector dependence of the nonequilibrium
structure factorS(q,t), ~4.9!, in the vicinity of the Bragg peak, for
the times listed in the legend, for spins with antiferromagnetic spin
coupling initially in thermal equilibrium~initial coupling constant
KI523! that suddenly~at t50! are brought in contact with a heat
reservoir of infinite temperature~KF50!. ~b! Semilog plot of the
decay ofS(q,t)/x(q,TI), for the system described in~a!, in the
region of the Bragg peak, as a function oft for values ofq/p listed
in the legend. The initial decay ofS is exponential, but the time
period over which this behavior persists decreases with decreasing
q. In the regime of exponential decay, the shape ofS(q,t) remains
approximately invariant.

FIG. 5. Wave-vector dependence of the nonequilibrium struc-
ture factorS(q,t) for the system described in Fig. 4 but for the
entire Brillouin zone. The behavior ofS can be described as though
the spins for the larger values ofq rapidly equilibrate to the final
structure factor atTF5`, for whichS is independent ofq, but with
a slowly decaying time-dependent amplitude. This slow decay is a
direct consequence of the conserved spin dynamics and the sum
rule ~2.9!. Similarly the behavior forq'0 can be described as
though the spins remain ‘‘frozen’’ at their initial structure factor
because of the conserved spin dynamics.

FIG. 6. Wave-vector dependence ofS(q,t), for the dimension-
less times 0, 25, 50, 100, 500, 750, for spins with ferromagnetic
spin coupling initially in thermal equilibrium~initial coupling con-
stantKI53! that are suddenly brought in contact with a heat reser-
voir of infinite temperature~KF50!. The main features of the be-
havior are qualitatively similar to the case of antiferromagnetic
coupling~Fig. 5!. For larger values ofq the spins rapidly equilibrate
to the final temperature structure factor, but with an amplitude
which decays in an extremely slow manner, whereas forq'0 it is
as though the spins are frozen at their initial structure factor.
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The asymptotic form~4.7! ~square-root decrease! becomes
operational only fort@tw , wheretw581 376.

We remind the reader that the major qualitative character-
istics ofSwere already established in Sec. III C, without the
need for evaluating the functionsG(t) andJ(q,t), which are
given by ~3.21! and ~3.22!. Of course, one could not avoid
evaluating the latter equations in order to establish the de-
tailed quantitative behavior ofS.

V. SUMMARY

In this article we have investigated the time evolution of
the nonequilibrium structure factorS(q,t) for a system of
spins subject to Kawasaki spin-exchange dynamics, which
conserves the total spin. We have considered the case where
the system is subject to a sudden temperature increase, from
an initial temperatureTI to a final temperatureTF . The ex-
istence of a conserved variable greatly complicates the treat-
ment, as compared to the analogous issues for the Glauber
dynamics, which does not possess a conserved mode.
Whereas an exact expression forS(q,t) can be derived for
the latter model in one dimension whatever the values ofTI
and TF , for the case of the spin-conserving dynamics, an
approximation-free treatment can be given only ifTF is in-
finitely large. Except for that case, the equation of motion
satisfied byS(q,t) involves a nonterminating hierarchy of
equations of motion for higher-order spin correlation func-
tions.

We have found the exact form ofS(q,t) for the case
TF5` in Sec. IV, which, to the best of our knowledge, is the
first instance of an exact solution forS(q,t) in which the
total spin is conserved. In order to gain insight for the intrac-
table case of finiteTF , we have invoked an approximation
procedure that truncates the hierarchy of equations of motion
at the level of two-spin nonequilibrium correlation functions.
This truncation procedure was introduced in Sec. III B and
consists of replacing the four-spin nonequilibrium correla-
tion function ^s21s0s1sn& t by the two-spin quantity
^s0sn& t , leading to a solvable equation of motion for
S(q,t). Although invoking uncontrolled approximations in
nonequilibrium problems can have profound effects, we be-
lieve our approximation is physically quite reasonable, and
arguments in support of this approximation were presented
in that section. The approximate equation of motion resulting
from our truncation procedure was shown to preserve the
following two crucial features of the exact solution:~i!
S(q,t) evolves to the correct long-time valuex(q,TF) the
final-state equilibrium structure factor, and~ii ! S(q,t) satis-
fies the exact sum rule~2.9!.

The formal solution of the resulting approximate equation
of motion forS(q,t) was obtained in Sec. III D for arbitrary
TF . The details were worked out in Sec. IV only for the
special case of infiniteTF . We plan to work out thequanti-
tativedetails for the case of finiteTF in a future publication.
However, even in the absence of such a treatment, it was
already possible in Sec. III C to outline the qualitative fea-
tures and major trends in the behavior ofS(q,t). We briefly
summarize the major conclusions.

First, as discussed in Sec. III C 1, in the initial stage the
decay of a Bragg peak proceeds exponentially for either fer-
romagnetic or antiferromagnetic spin interactions. The length

of this stage increases without bound asTI is decreased to-
wards zero. In the case of antiferromagnetic interactions one
can, additionally, speak of the Bragg peak maintaining its
shape as a function of wave vector, during this initial stage
of exponential decay. This is a consequence of the fact that
the lifetime tq is in essence independent of wave vector in
the immediate vicinity of the BZ boundary. For the case of
ferromagnetic interactions, however, although the Bragg
peak forq'0 also initially decays exponentially with time,
in the process the shape of the peak is not retained. This is
becausetq is strongly dependent onq; diverging asq22 for
smallq.

Second, as discussed in Sec. III C 2, as time progresses
@V(q)t>4#, S(q,t) demonstrates quasiequilibrated behavior.
Specifically, apart from a time-dependent amplitude,S(q,t)
shows the samewave-vector dependenceas its equilibrium
form at the final temperature, i.e.,S(q,t)/x(q,TF)'A(t),
independent of wave vector but dependent on time. The
function A(t) approaches unity at long times with at21/2

correction term. This description is applicable for both fer-
romagnetic and antiferromagnetic interactions, except that in
the latter case for wave vectors in the immediate vicinity of
the BZ boundary the presence of the Bragg peak complicates
the story. @In particular, if the initial temperature is suffi-
ciently small, the behavior ofS(q,t) continues to be domi-
nated by the exponentially decaying Bragg peak long after
the behaviorS(q,t)/x(q,TF)'A(t) has set in for smaller
values ofuqu.# As time progresses, the range of wave vectors
for which this description is valid gradually spreads towards
the interior of the BZ. By contrast, for wave vectors in the
vicinity of the center of the BZ, the behavior ofS over long
periods of time is as though the spins are frozen at their
initial temperature, and thus for these wave vectors
S(q,t)'x(q,TI). The physical origin of this very slow evo-
lution for small wave vectors is due to the fact that achieving
a major change inS for smallq requires a long-range spatial
reorientation of the spins, but such a process is perforce very
slow since a given spin will flip only if one of its two
nearest-neighbors is at that moment oriented oppositely. This
process can be visualized in terms of random walks of do-
main boundaries, which feature spatial progression on a lat-
tice proportional to the square root of the time interval.

Thus far our remarks have been restricted to our explicit
results for the one-dimensional spin-exchange model. We
believe, however, that these results can offer qualitative in-
sights into the disordering behavior of higher-dimensional
systems, e.g., the disordering of adsorbed monolayers upon a
sudden increase in temperature at constant coverage@49#.
This is because the characteristic features ofS(q,t) for dis-
ordering are shaped first and foremost by the requirement of
a dynamics that features a conserved mode. The dimension-
ality of the system is largely a secondary issue, with the
exception that at long times we expect the dimensionality to
be manifested in at2d/2 power-law decay, the signature of
diffusive motion ind dimensions. Of course, theequilibrium
properties of a higher-dimensional lattice of Ising spins are
profoundly different from those for its one-dimensional
counterpart. Nevertheless we believe that the impact of the
constraint of the conserved total spin on the time evolution is
of prime importance as compared to the spatial dimension of
the system.

54 2283NONEQUILIBRIUM STRUCTURE FACTOR FOR . . .



It would be of great benefit if this qualitative description
of the dynamics could be put to experimental test. A two-
dimensional spin-exchange model should be relevant in de-
scribing diffusive processes of atoms on surfaces where both
adsorption and desorption are absent. We are aware of only
one experiment where the shape-preserving exponential de-
cay of the Bragg peak has been observed. This is the case of
the disordering of the Si~100!2~23n! ordered-defect state
@19#. We have also found some tentative evidence for this
type of behavior upon analyzing some Monte Carlo data
~Fig. 3 of Ref. @17#! for the two-dimensional Ising model
with nearest-neighbor repulsion having thec~232! phase as
its ground state. We also urge that our prediction for suffi-
ciently long times, namely, thatS(q,t)/x(q,TF)'A(t) inde-
pendent of wave vector, be subject to experimental test. If
confirmed it would be of great interest to test whether the
long-term time dependence ofA(t) is that oft21, appropriate
to two dimensions.

The disordering process resulting from an abrupt increase
in the temperature involves issues in nonequilibrium statisti-
cal mechanics of great difficulty yet great interest. To pro-
vide an approximation-free treatment based on spin-
exchange processes we had to restrict our attention to a one-
dimensional system and whose final temperature is infinitely
large. Nevertheless, the approximate treatment developed in
Sec. III has provided us with clear expectations for higher-
dimensional systems and whereTF is finite, even though an
approximation-free treatment is out of reach. One can antici-
pate that the availability of accurate experimental data for the
nonequilibrium structure factor would spawn significant
theoretical progress in understanding these issues.
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APPENDIX A: THE INTEGRAL F „w,t…

1. Preliminaries

In this Appendix we establish the major properties and
useful expansions of the function defined for arbitrary com-
plex w by

F~w,t!5
1

2p E
0

1

dxS 12x

x D 1/2 exp~22tx!

x1w
~Ret.0!.

~A1!

This function first appears in Sec. IV, in~4.2!, wherew5u, a
quantity defined by~4.4!, and wheret5t, the dimensionless
time variable. We recall thatu.0 for ferromagnetic cou-
pling, whereasu,21 for antiferromagnetic coupling. For
these~real! values of the argumentw the functionF is real.
Additionally, in ~4.12! we require ReF for values ofw which
are approaching the real interval@21,0#, specifically for
w52sin2(q/2)6 i0, whereq lies in the BZ. This integral

can also be shown to arise in the treatment of the one-
dimensional Glauber model for arbitrary initial and final
temperatures@50#, and in Ref.@51# @see their Eq.~55!# in a
study of the kinetics of a sequence of first-order chemical
reactions. We have therefore chosen to provide here a list of
useful expansions of this function.

The dispersion integral~A1! defines a function that is ana-
lytic in the complexw plane except for a cut in the interval
@21,0#, and which is also analytic in the finite part of the
complex t plane. If w is any real number in the interval
@21,0# we have

ReF~w6 i0,t!5
1

2p
PE

0

1

dxS 12x

x D 1/2 exp~22tx!

x1w
,

~A2!

ImF~w6 i0,t!57
1

2 S 11w

2w D 1/2e2tw. ~A28!

In writing ~A2! and~A28! we have used the standard identity

1

x1w6 i«
5P

1

x1w
7 ipd~x1w!,

where« is a real, positive infinitesimal, and P denotes prin-
cipal value.

For a few special cases one can evaluate~A1! in closed
form. These includew521 for arbitraryt, as well ast50
for arbitraryw. The results are

F~21,t!52
1

2
e2tI 0~t!, ~A3!

whereI 0 denotes a modified Bessel function, and

F~w,0!5
1

2 F S 11w

w D 1/221G . ~A4!

Note that ~A4! exhibits in an explicit manner the branch
points ofF atw50,21. For general values ofw andt there
is no alternative but to develop assorted expansions.

One can readily arrive at alternate integral representations
of F that are not only of intrinsic interest but will greatly aid
us later in developing expansions for various regimes. Sup-
pose first that Rew.0. We may then substitute in~A1! the
integral representation

~x1w!215E
0

`

ds exp@2s~x1w!# ~Rew.0!. ~A5!

Interchanging the order of integrations and using the identity
@52#

E
0

1

dx exp~2zx!S 12x

x D 1/25S p

2 De2z/2@ I 0~z/2!1I 1~z/2!#,

~A6!

we arrive at the formula
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F~w,t!5e2twH F~w,0!2
1

2 E
0

t

dx e2~2w11!x

3@ I 0~x!1I 1~x!#J . ~A7!

Recall thatF(w,0) is given by~A4!. We emphasize that the
result ~A7!, although derived subject to the restriction
Rew.0 so as to write~A5!, can be analytically continued
throughout thew plane.

A useful check of~A7! is provided by considering the
special casew521. Using Eq.~11.3.14! of Ref. @46#, the
indefinite integral can now be evaluated in closed form, with
the result being

E
0

t

dx ex@ I 0~x!1I 1~x!#5etI 0~t!21. ~A8!

The resulting value ofF~21,t! obtained from~A7! agrees
with ~A3!.

A useful variant of~A7! can be obtained by rewriting the
integral from 0 tot as the integral from 0 tò minus the
integral fromt to `. This leads to the result

F~w,t!5
1

2
e2twE

t

`

dx e2~2w11!x@ I 0~x!1I 1~x!#

~Rew.0!. ~A9!

We emphasize that~A9! is applicable only for the right-half
w plane, as is evident from the fact that the integral diverges
if Rew,0 since the functionsI 0,1 grow asex(2px)21/2 for
large positivex. Each of~A7! and~A9! will be employed in
Sec. A 5 as the starting point for developing useful approxi-
mate expressions forF for large values oft.

We now provide two integral representations ofF which
involve closed integration contours. The advantage provided
by a closed contour is that one can employ the Cauchy resi-
due theorem and other standard results of analytic function
theory.

The first of these representations is obtained by starting
from ~A1! and replacing the given integration contour by the
double hairpin contour which encloses the closed interval
@0,1# of the realx axis and which is traversed in thenegative
~clockwise! sense. It is assumed that2w lies outside the
hairpin, i.e.,w does not lie on the interval~21,0! of the real
axis. On the upper line segment of the hairpin we have argx
5arg~12x!50, whereas on the lower line segment argx50,
arg~12x!52p. Hence the contribution from the lower line
segment is identical to that from the upper segment. It there-
fore follows that

F~w,t!5
1

4p R dx
e22tx

x1w S 12x

x D 1/2. ~A10!

The second closed contour representation is obtained
from ~A10! by defining a new variablez according to the
relationx52(z21)2/(4z). Under this mapping the hairpin
contour in~A10! corresponds to traversing the unit circle in
thez plane and in thepositive~counterclockwise! sense. It is
then straightforward to show that~A10! may be rewritten as

F~w,t!5
ie2t

4p R dz
~z11!2

z@z222~2w11!z11#

3 exp
t

2 S z1
1

zD . ~A11!

Note that for the special casew521 the last formula reduces
to

F~21,t!5
ie2t

4p R dz
1

z
exp

t

2 S z1
1

zD . ~A12!

This integral can immediately be evaluated by noting that the
exponential term in the integrand is the generating function
for modified Bessel functions of integral order@Eq. ~9.6.33!
of Ref. @46##

exp
t

2 S z1
1

zD5 (
n52`

`

znI n~t!. ~A13!

Interchanging the sum and integration in~A12!, noting that
the only nonzero contribution is from then50 term, and
using the Cauchy residue theorem, we find that~A12! agrees
with ~A3!. This procedure of utilizing~A13! will be gener-
alized in Sec. A 4 to provide an expansion ofF(w,t) for
arbitrary ~in general, complex! values ofw, as an infinite
series in theI n .

2. Taylor expansion int

The functionF can be expanded as a Taylor series in
powers oft, ~A16!, which has an infinite radius of conver-
gence. To obtain this result we replacee22tx in ~A1! by its
power series expansion and integrate term by term. One
readily finds

F~w,t!5
1

4w (
n50

`
~1/2!n
~2!nn!

2F1S 1,n1
1

2
;n12;21/wD

3~22t!n, ~A14!

upon using the integral representation of the hypergeometric
function 2F1(a,b;c;z) @Eq. ~15.3.1! of Ref. @46##. Here
(a)051, (a)n5a(a11)•••(a1n21) is the Pochammer
symbol. It will be recalled that the hypergeometric function
has branch points at11 and`, and possesses a power series
expansion inz with unit radius of convergence@Eq. ~15.1.1!
of Ref. @46##. Noting these analytic properties of the hyper-
geometric function, the individual terms of the expansion
~A14! are seen to exhibit the branch points~w50,21! of F.
For actual numerical calculations, the power series represen-
tation of F could be used to evaluate the expansion coeffi-
cients in ~A14! as long asuwu.1. However, rather than be
limited by this restriction onuwu, it is actually preferable to
derive, starting from~A14!, an alternate expansion ofF
which can be used for allw. We employ the identity
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2F1S 1,n1
1

2
;n12;21/wD5

2w~2!n~2w!n

~1/2!n
S 11w

w D 1/2
22w~n11!2F1

3S 1,2n;
1

2
;11wD ~A15!

which can be derived using Eqs.~15.3.6! and~15.3.7! of Ref.
@46#, so that~A14! may be rewritten in the more convenient
form

F~w,t!5
1

2 S 11w

w D 1/2e2wt2
1

2 (
n50

` S 12D
n

~n! !2 2F1

3S 1,2n;
1

2
;11wD ~22t!n. ~A16!

In contrast to~A14!, which is useful for computational pur-
poses only foruwu.1, ~A16! can be used for allw since the
power series expansion of2F1(1,2n;1/2;11w) terminates
aftern11 terms, i.e., it is a polynomial of degreen11 in the
variablew. Additionally, the first term on the right-hand side
of ~A16! explicitly embodies all of the multivalued proper-
ties of F as a function of the variablew. In particular, the
branch points ofF atw521, 0 are manifestly explicit in that
term. Furthermore, the series in~A16! is single valued as one
crosses the branch line@21,0# of F in the variablew. In
short,~A16! is especially useful for small values oft, but it
may be used for any value ofw. Note that~A16! correctly
reduces to~A4! upon substitutingt50. It should also be
noted that~A16! reduces to~A3! upon substitutingw521
since the right-hand side of~A16! may be identified with
21/21F1(1/2;1;22t)521/2e2tI 0(t). Here 1F1 denotes
the confluent hypergeometric function and we have used Eq.
~13.6.3! of Ref. @46#.

3. Laurent expansion inw

Our second major result is the Laurent expansion ofF, in
powers ofw21, which in view of the location of the branch
line of F, converges for the annular regionuwu.1,

F~w,t!5
1

4w (
n50

`
~1/2!n
~2!n

1F1S n1
1

2
;n12;22t D ~21/w!n.

~A17!

To obtain ~A17! note that if uwu.1 the factor (x1w)21 in
~A1! may be expanded as a geometric series in powers of
x/w, which converges for allx in the integration interval.
Substituting that expansion, integrating term by term, and
using the integral representation of the confluent hypergeo-
metric function,1F1(a;b;z), Eq. ~13.2.1! of Ref. @46# gives
~A17!. The power series expansion of1F1 converges for all
finite z @see Eq.~13.1.2! of Ref. @46##.

4. Neumann expansions

We now derive an expansion ofF(w,t) as an infinite
series of modified Bessel functions in the variablet. This
expansion is analogous to a Neumann@53# expansion of a

function, as an infinite series of ordinary Bessel functions. It
is of great computational usefulness especially for small and
moderate real values oft.

Our starting point is the integral representation~A11!, and
w is any complex number subject to the restriction that it not
lie in the interval@21,0# of the real axis. We note that the
polynomial z222(2w11)z11 has two roots, 2w11
62Aw(w11), one of which, to be denoted byn, necessarily
lies within the interior of the unit circle, and the second is
given by 1/n and it lies exterior to the unit circle.~Subse-
quently we shall also alloww to approach the interval
@21,0#, so that both ofn and 1/n approach the unit circle, but
that will be a special limiting case of the general treatment
we now give.! The integration contour in~A11! is the unit
circle of thez plane, and it therefore encloses the simple pole
of the integrand atz5n as well as the essential singularity at
the origin. The integrand is otherwise analytic within the unit
circle. We may thus alter the integration contour so as to
consist of two arbitrary nonintersecting closed contours lying
within the unit circle, the first enclosing the simple pole and
the second enclosing the origin. The contribution of the first
~pole! integral toF(w,t), to be denoted byFp follows im-
mediately from the residue theorem, and it is given by

Fp5
1

2
e2t

11n

12n
exp F t

2
~n11/n!G . ~A18!

To evaluate the contribution, to be denoted byFes, of the
second~essential singularity! integral toF(w,t), we replace
the exponential factor of the integrand by~A13! and inte-
grate term by term, and use the fact that

1

2p i R dz
1

zn~n2z!
5

1

nn
~A19!

if n is a positive integer, whereas this integral equals zero if
n is zero or a negative integer.@Note that the contour in
~A19! encloses the origin but excludes the pointn.# One
finds that

Fes~w,t!5
1

2
e2tF2I 0~t!1

11n

12n (
n51

`

~nn2n2n!I n~t!G .
~A20!

Finally, adding the contribution of~A18! after using~A13!,
one obtains the result

F~w,t!5
e2t

12n FnI 0~t!1~11n! (
n51

`

nnI n~t!G . ~A21!

Note that if w is real we haven52w1172Aw(w11),
where the upper~lower! sign is chosen ifw.0 ~w,21!.

Finally, we can use~A18! and ~A20! to obtain ReF and
ImF for values ofw which are situated an infinitesimal dis-
tance above or below the segment~21,0! of the real axis.
We writew52sin2(q/2)1 i«, where« is a vanishingly small
real number~either positive or negative! and 0<q<p. One
then easily finds thatn→e7 iq, where the upper~lower! sign
applies if« is positive~negative!. Using~A18! and~A20! we
find that the quantitiesFp andFes turn out to be pure imagi-
nary and pure real, respectively. We thus have
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ReF@2sin2~q/2!6 i0,t#52e2tF12 I 0~t!

1cot~q/2! (
n51

`

I n~t!sinnqG .
~A22!

The value of ImF@2sin2(q/2)6 i0,t# in essence has already
been given by~A28!.

5. Large-t expansions

As one increasest and enters the regimet@1, the expan-
sions~A21! and~A22! gradually become less useful because
a very large number of theI functions must be calculated. In
the following we provide an assortment of useful formulas
for this important regime. The expansions~A23! and ~A24!
provide accurate numerical values for much smaller values
of t than can be obtained using the asymptotic expansion
~A27!, at least without invoking specialized acceleration
methods.

a. w>0, real

Suppose first thatw is positive and real. Our starting point
is the integral representation~A9!. Now, if t.4, for all val-
ues of the integration variable we may approximate each of
I 0 and I 1 by e

x/(2px)1/2, which is the leading term of each
function‘s asymptotic expansion,@Eq. ~13.5.1! of Ref. @46##.
Substituting in~A9! and using Eq.~7.4.7! of Ref. @46#, we
obtain

F~w,t!;
1

2w1/2 e
2twerfc~2tw!1/2 ~t.4!, ~A23!

where erfc denotes the complementary error function.
Higher-order terms of the asymptotic expansion ofI 0 and I 1
give rise to two distinct sets of terms, the first of which are of
order 1/~2t! times the result~A23!, while the second are of
order exp~22t!. Both sets of terms may be ignored ift.4.
This expansion is used in Sec. IV B 1.

b. w<21, real

Results similar to~A23! can be given for the regimew
real andw,21. In this regime we use the integral represen-
tation ~A7! and note that the exponential factore2tw decays,
while there is a contribution to the integral which grows
exponentially, arising from values of the integration variable
in the immediate vicinity of the upper limitt. For these
values ofx we may again approximate the functionsI 0 and
I 1 as in the preceding paragraph. The dominant contribution
to the integral can be obtained by integrating by parts and
retaining the leading term. One readily finds that the exact
result ~A7! can be approximated by

F~w,t!;
21

2~2pt!1/2uwu ~2t@1!. ~A24!

This result is utilized in Sec. IV B 2.

c. Asymptotic expansion

The complete asymptotic expansion of~A1! in powers of
1/t can be obtained by invoking the standard method of
Laplace@54#. One substitutes in~A1! the Taylor series ex-
pansion of (12x)1/2/(x1w) in powers ofx, extends the up-
per limit of integration to`, and integrates term by term.
Now

~12x!1/2/~x1w!5
1

w (
n50

`

~2x/w!n(
k50

n S 2
1

2D
k

~2w!k

k!
.

~A25!

One readily obtains as the final result

F~w,t!;
1

2w~2pt!1/2 (
n50

` S 21

2wt D nDn~w!, ~A26!

where the expansion coefficientDn(w) is a polynomial inw
given by

Dn~w!5
~2n!!

22nn! (
k50

n

~21/2!kw
k/k!. ~A27!

APPENDIX B: GLAUBER KINETIC ISING MODEL

In this appendix we derive selected formulas pertaining to
S(q,t) for the one-dimensional Glauber kinetic Ising model.
We have already developed the necessary formalism in Secs.
II and III, and it is relatively straightforward to provide a
parallel derivation for the Glauber model. We restrict our
attention here to providing basic formulas. Numerical results
and major asymptotic properties will be presented elsewhere
@50#.

In the Glauber kinetic Ising model, the allowed transitions
are single-spin flips,s i→s i852s i , and the basic form of
the spin-flip master equation operator is given by@see dis-
cussion around~2.15!#,

DSF@sus8#5(
i

ds,s8
@ i # DSF

i @sus8#. ~B1!

Corresponding to single-spin flips, the local operator has the
form @compare with~2.17!#,

DSF
i @sus8#5Wi

G~s8!~ds
i8 ,2s i

2ds i8 ,s i !5

2Wi
G~s8!s is i8 , ~B2!

whereWi
G~s!, the Glauber transition probability function

@12#, is constructed to satisfy detailed balance and is given
by @compare with~2.20!#,

Wi
G~s!5

a

2 S 12
gF

2
s i~s i111s i21! D . ~B3!

In this appendix the quantitya denotes the spin-flip rate for
uncoupled spins~distinct from the Kawasaki spin-exchange
rate!, and is taken as a phenomenological parameter of the
model; the overall factor of two in~B3! is introduced for
convenience. Note from~B3! that for ferromagnetic cou-
plings the spin-flip rate is maximized when neighboring
spins have values opposite to that at sitei , s i6152s i ,
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whileWi
G~s! is minimized whens i615s i . For this reason,

the Glauber model provides a relatively simple framework to
study the dynamics of cooperative phenomena.

Combining~B1!, ~B2!, and~B3!, the single-spin equation
of motion can be derived@compare with~2.21!#,

D̃s
SFs i522Wi

G~s!s i52aS s i2
gF

2
~s i111s i21! D .

~B4!

In the Glauber model, the single-spin equation of motion
includesonly single spins and does not involve higher-order
spin terms, as is the case with the Kawasaki model~2.23!.
Fourier transforming~B4! @see~2.4!# thus diagonalizes the
dynamical problem,

D̃s
SFs~q!52a~12gF cosq!s~q![2l~q!s~q!. ~B5!

Note that, in contrast to the Kawasaki model, the spectrum of
relaxation ratesl(q) is bounded betweena~11gF! and
a~12gF!. In particular,l(q) does not vanish for any nonzero
temperature, i.e., there is no conserved mode for this dy-
namical model. We remark that whereass(q) is an eigen-
vector of the spin-flip operator for all temperatures,s(q) is
an eigenvector of the spin-exchange operator only for
TF5`; see~2.24!. For this reason the exact form ofS(q,t)
can be established for the Glauber model for any final tem-
perature,TF , but only forTF5` in the case of the Kawasaki
model.

The corresponding two-spin equation of motion for the
Glauber model can be derived using~B1–B3! and is given
by

D̃s
SFs is j5s i D̃s

SFs j1s j D̃s
SFs i14d i , jWi

G~s!, ~B6!

which should be contrasted with~2.22!. Taking the Fourier
transform and proceeding as in Sec. II, we arrive at the equa-
tion of motion,

]S~q,t !

]t
522$l~q!@S~q,t !2x~q,TF!#1agFG~ t !%, ~B7!

whereG(t)[F1(t)2uF , with F1(t) the nearest-neighbor
nonequilibrium correlation function, now for spin-flip dy-
namics. As mentioned in Sec. II C, and as we see here ex-
plicitly, the equation of motion forS(q,t), since it includes
only two-spin nonequilibrium correlation functions, does not
entail an infinite hierarchy of associated equations of motion
for higher-order correlation functions.

Of course,~B7! must be solved subject to the constraint of
the sum rule~2.9! which arises solely because of the Ising
fixed-length spin condition and is independent of the dy-
namical model. We can impose~2.9! on ~B7! by requiring
that the functionG(t) obey the constraint analogous to~3.2!,

G~ t !52
1

2pagF
E

2p

p

dq l~q!@S~q,t !2x~q,TF!#. ~B8!

Just as with the Kawasaki model, the role of the sum rule is
to effectively cause the equation of motion forS(q,t) to be
nonlocal in theq space@see discussion around~3.2!#. The
formal solution to~B7! is then similar to~3.5! with V(q)
replaced withl(q) and with

J~q,t !52agFE
0

t

dt8 G~ t8!exp@22l~q!~ t2t8!#. ~B9!

As in Sec. III, the effect of imposing the sum rule is to
require thatG(t) obey the integral equation~3.7!, where the
analogous quantities for the Glauber model are given by

P~ t !52agFE
2p

p

dq exp@22l~q!t#, ~B10!

and

Q~ t !5E
2p

p

dq@S~q,0!2x~q,TF!#exp@22l~q!t#. ~B11!

Note that~B11! is formally identical to~3.9!, except that the
relaxation spectruml(q) differs from that for the Kawasaki
model.

It is thus clear that one can follow the steps presented in
Sec. III and derive the exact solution forS(q,t). The equa-
tions presented here serve as the starting point for a detailed
analysis ofS(q,t), an analysis that we present elsewhere
@50#. A key result of that analysis is that the solution can be
expressed in terms of the dispersion integralF(w,t), and
hence it is straightforward to derive the major asymptotic
properties ofS(q,t) for the Glauber model using the results
of Appendix A. The purpose of the development we have
provided here is to show the close formal similarity between
the Glauber and Kawasaki models, even though the dynam-
ics differ qualitatively in the lack of a conserved mode in the
case of the Glauber model.
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